1
|
Khakina E, Nikovskiy I, Spiridonov K, Novikov V, Antoshkina E, Dzhalilova D, Diatroptova M, Martyanova A, Rodionov A, Nelyubina YV. Hypoxia-activated dissociation of heteroleptic cobalt(III) complexes with functionalized 2,2'-bipyridines and a model anticancer drug esculetin. Dalton Trans 2025. [PMID: 39846889 DOI: 10.1039/d4dt02628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
A low oxygen level in solid tumors is behind the modern concept of selective chemotherapy by hypoxia-activated prodrugs, such as heteroleptic complexes of transition metals (cobalt(III), iron(III) or platinum(IV)) with bi- or tetradentate ligands and an anticancer drug molecule as a co-ligand. A series of new cobalt(III) complexes [Co(LR)2(esc)]ClO4 with esculetin (6,7-dihydroxycoumarin) and 2,2'-bipyridines (2,2'-bipy) functionalized by different substituents R were probed in the hypoxia-activated delivery of this model anticancer drug. Their combined study by cyclic voltammetry and in situ NMR spectroscopy allowed identifying linear correlations of the electrochemical reduction potentials and the rate of the hypoxia-activated dissociation of [Co(LR)2(esc)]ClO4 with the Hammett constants of the substituents in 2,2'-bipy ligands. The latter, therefore, should be decorated with the most electron-withdrawing groups (unless they preclude the formation of a heteroleptic complex) to promote the drug release and increase the anticancer activity towards, e.g., human epidermoid carcinoma A431.These correlations can be transferred to other types of bi- or tetradentate ligands, thereby paving the way towards the molecular design of cobalt complexes as prodrugs for hypoxia-activated anticancer drug delivery with high therapeutic efficiency.
Collapse
Affiliation(s)
- Ekaterina Khakina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
- National Research University Higher School of Economics, Faculty of Chemistry, 101000, Vavilova Str., 7, Moscow, Russia
| | - Igor Nikovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Kirill Spiridonov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Valentin Novikov
- Department de Quimica Inorganica and IN2UB, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| | - Evgenia Antoshkina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 1174183, TsyurupyStr., Moscow, Russia
| | - Marina Diatroptova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 1174183, TsyurupyStr., Moscow, Russia
| | - Alina Martyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Ostrovityanova Str., 1, Moscow, Russia
| | - Alexey Rodionov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| |
Collapse
|
2
|
Goodman DM, Ritter CU, Chen E, Tong KKH, Riisom M, Söhnel T, Jamieson SMF, Anderson RF, Brothers PJ, Ware DC, Hartinger CG. Masking the Bioactivity of Hydroxamic Acids by Coordination to Cobalt: Towards Bioreductive Anticancer Agents. Chemistry 2024; 30:e202401724. [PMID: 38853639 DOI: 10.1002/chem.202401724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The clinical use of many potent anticancer agents is limited by their non-selective toxicity to healthy tissue. One of these examples is vorinostat (SAHA), a pan histone deacetylase inhibitor, which shows high cytotoxicity with limited discrimination for cancerous over healthy cells. In an attempt to improve tumor selectivity, we exploited the properties of cobalt(III) as a redox-active metal center through stabilization with cyclen and cyclam tetraazamacrocycles, masking the anticancer activity of SAHA and other hydroxamic acid derivatives to allow for the complex to reach the hypoxic microenvironment of the tumor. Biological assays demonstrated the desired low in vitro anticancer activity of the complexes, suggesting effective masking of the activity of SAHA. Once in the tumor, the bioactive moiety may be released through the reduction of the CoIII center. Investigations revealed long-term stability of the complexes, with cyclic voltammetry and chemical reduction experiments supporting the design hypothesis of SAHA release through the reduction of the CoIII prodrug. The results highlight the potential for further developing this complex class as novel anticancer agents by masking the high cytotoxicity of a given drug, however, the cellular uptake needs to be improved.
Collapse
Affiliation(s)
- David M Goodman
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Cornelia U Ritter
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Erin Chen
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Kelvin K H Tong
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mie Riisom
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Robert F Anderson
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Penelope J Brothers
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - David C Ware
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
3
|
Jagathesan K, Roy S. Recent Development of Transition Metal Complexes as Chemotherapeutic Hypoxia Activated Prodrug (HAP). ChemMedChem 2024; 19:e202400127. [PMID: 38634306 DOI: 10.1002/cmdc.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Hypoxia is a state characterized by low concentration of Oxygen. Hypoxic state is often found in the central region of solid tumors. Hypoxia is associated with abnormal neovascularization resulted in poor blood flow in tissues and increased proliferation of tumor cells, imbalance between O2 supply and O2 consumption in tumor cells, high concentration of proton and strong reducibility. And, these abnormalities enhance the survival potency of the hypoxic tumours and increase the resistance towards chemotherapy and radiotherapy. One of the approach for treating hypoxic region of tumour is to use reducing environment of hypoxic tumours for reducing a molecule (hypoxia activated prodrug, HAP) and as a result the active drug will be released in hypoxic region in a controlled manner from the prodrug and kill the hypoxic tumour. Co(III) and Pt(IV) complexes with monodentate active drug molecule in the axial position can be reduced to Co(II) and Pt(II) moieties and as a result, the axial ligands (active drug) could come out from the metal center and could show its anticancer activity. In this review we have highlighted the research articles where transition metal-based complexes are used as chemotherapeutic hypoxia activated prodrug molecules which are reported in last 5 years.
Collapse
Affiliation(s)
- K Jagathesan
- Dept. of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Sovan Roy
- Dept. of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore, 632014, India
| |
Collapse
|
4
|
Ma X, Wang Z, Li Y, Wang Y, Liu W. Metal complexes bearing EGFR-inhibiting ligands as promising anticancer agents. Med Res Rev 2024; 44:1545-1565. [PMID: 38279970 DOI: 10.1002/med.22021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Overexpression of the epidermal growth factor receptor (EGFR, erbB1) has been observed in a wide range of solid tumors and has frequently been associated with poor prognosis. As a result, EGFR inhibition has become an attractive anticancer drug design strategy, and a large number of small molecular inhibitors have been developed. Despite the widespread clinical use of EGFR tyrosine kinase inhibitors (TKIs), their drug resistance, inadequate accumulation in tumors, and severe side effects have spurred the search for better antitumor drugs. Metal complexes have attracted much attention because of their different mechanisms compared with EGFR-TKIs. Therefore, the combination of metals and inhibitors is a promising anticancer strategy. For example, Ru and Pt centers are introduced to design complexes with double or multiple targets, while Au complexes are combined with inhibitors to overcome drug resistance. Co complexes are designed as prodrugs with weak side effects and enhanced targeting by the hypoxia activation strategy, and other metals such as Rh and Fe enhance the anticancer effect of the complexes. In addition, the introduction of Ga center is beneficial to the development of nuclear imaging tracers. In this paper, metal EGFR-TKI complexes in the last 15 years are reviewed, their mechanisms are briefly introduced, and their advantages are summarized.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Zhaoran Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yifei Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yawen Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Jana A, Sahoo S, Paul S, Sahoo S, Jayabaskaran C, Chakravarty AR. Photodynamic Therapy with Targeted Release of Boron-Dipyrromethene Dye from Cobalt(III) Prodrugs in Red Light. Inorg Chem 2024; 63:6822-6835. [PMID: 38560761 DOI: 10.1021/acs.inorgchem.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Boron-dipyrromethene (BODIPY) dyes are promising photosensitizers for cellular imaging and photodynamic therapy (PDT) owing to their excellent photophysical properties and the synthetically tunable core. Metalation provides a convenient way to overcome the drawbacks arising from their low aqueous solubility. New photo-/redox-responsive Co(III) prodrug chaperones are developed as anticancer PDT agents for efficient cellular delivery of red-light-active BODIPY dyes. The photobiological activity of heteroleptic Co(III) complexes derived from tris(2-pyridylmethyl)amine (TPA) and acetylacetone-conjugated PEGylated distyryl BODIPY (HL1) or its dibromo analogue (HL2), [CoIII(TPA)(L1/L2)](ClO4)2 (1 and 2), are investigated. The Co(III)/Co(II) redox potential is tuned using the Co(III)-TPA scaffold. Complex 1 displays the in vitro release of BODIPY on red light irradiation. Complex 2, having good singlet oxygen quantum yield (ΦΔ ∼ 0.28 in DMSO), demonstrates submicromolar photocytotoxicity to HeLa cancer cells (IC50 ≈ 0.23 μM) while being less toxic to HPL1D normal cells in red light. Cellular imaging using the emissive complex 1 shows mitochondrial localization and significant penetration into the HeLa tumor spheroids. Complex 2 shows supercoiled DNA photocleavage activity and apoptotic cell death through phototriggered generation of reactive oxygen species. The Co(III)-BODIPY prodrug conjugates exemplify new type of phototherapeutic agents with better efficacy than the organic dyes alone in the phototherapeutic window.
Collapse
Affiliation(s)
- Avishek Jana
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Subhadarsini Sahoo
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Subhadeep Paul
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Somarupa Sahoo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Chelliah Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
6
|
Dömötör O, Mathuber M, Kowol CR. In vitro biodistribution studies on clinically approved FGFR inhibitors ponatinib, nintedanib, erlotinib and the investigational inhibitor KP2692. Eur J Pharm Sci 2024; 192:106651. [PMID: 38013124 DOI: 10.1016/j.ejps.2023.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Binding towards human serum albumin (HSA) and α1-acid glycoprotein (AGP) of three approved fibroblast growth factor receptor (FGFR) inhibitors ponatinib (PON), nintedanib (NIN) and erdafitinib (ERD), as well as the experimental drug KP2692 was studied by means of spectrofluorometric and UV-visible spectrophotometric methods. Additionally, proton dissociation processes, lipophilicity, and fluorescence properties of these four molecules were investigated in detail. The FGFR inhibitors were predominantly presented in their single protonated form (HL+) at pH 7.4 (at blood pH). At gastric pH (pH 1-2) the protonated forms (+1 - +3) are present, which provide relatively good aqueous solubility of the drugs. All of the four inhibitors are highly or extremely lipophilic at pH 7.4 (logD7.4 ≥ 2.7). At acidic pH 2.0 PON and ERD are rather lipophilic, NIN is amphiphilic, while KP2692 is highly hydrophilic. All four compounds bind to HSA and AGP. Moderate binding of PON, KP2692 and NIN was found towards albumin (logK' = 4.5-4.7), while their affinity for AGP was about one order of magnitude higher (logK' = 5.2-5.7). ERD shows a larger affinity for both proteins (logK'HSA ≈ 5.2, logK'AGP ≈ 7.0). The computed constants were used to model the distribution of the FGFR inhibitors in blood plasma under physiological and pathological (acute phase) conditions. The changing levels of the two proteins under pathological conditions compensate each other for PON and NIN, so that the free drug fractions do not change considerably. In the case of ERD the higher AGP levels distinctly reduce the free available fraction of the drug. Comparison with clinical pharmacokinetic data indicates that the here presented solution distribution studies can very well predict the conditions in cancer patients.
Collapse
Affiliation(s)
- Orsolya Dömötör
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, 6720 Szeged, Hungary.
| | - Marlene Mathuber
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Palmeira-Mello MV, Caballero AB, Herrera-Ramírez P, Costa AR, Santana SS, Guedes GP, Caubet A, Batista AA, Gamez P, Lanznaster M. Cobalt(III)-py 2en systems as potential carriers of β-ketoester-based ligands. J Inorg Biochem 2023; 248:112345. [PMID: 37562318 DOI: 10.1016/j.jinorgbio.2023.112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
Two cobalt(III) complexes containing different β-ketoesters, namely [CoIII(L1)(py2en)](ClO4)2·H2O (1) and [CoIII(L2)(py2en)](ClO4)2 (2) (py2en = N,N'-bis(pyridin-2-ylmethyl)ethylenediamine; L1- = methylacetoacetate; L2- = ethyl 4-chloroacetoacetate) have been prepared and investigated as prototypes of bioreductive prodrugs. The presence of β-ketoester and py2en ligands in 1 and 2, as well as the perchlorate counterions, was supported by IR spectroscopy and CHN elemental analysis. The composition molecular structure of both complexes was confirmed by NMR spectroscopy and ESI mass spectrometry. Structural information was also obtained for 2via X-ray diffraction analysis. The redox properties indicate that 1 and 2 are suitable for reduction under biological conditions. Investigation of DNA-interacting suggest that 1 and 2 bind DNA via electrostatic forces. Both complexes may be employed as possible platforms for the delivery of biologically active compounds, since their reaction with ascorbic acid in PBS at pH 6.2 and 7.4 at 37°C results in the release of the β-ketoester ligands upon Co(III)/Co(II) reduction.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), 13561-901 São Carlos, São Paulo, Brazil; Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil.; nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ana B Caballero
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Piedad Herrera-Ramírez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Analu R Costa
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), 13561-901 São Carlos, São Paulo, Brazil
| | - Savyo S Santana
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil
| | - Amparo Caubet
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Alzir Azevedo Batista
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), 13561-901 São Carlos, São Paulo, Brazil
| | - Patrick Gamez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Mauricio Lanznaster
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil..
| |
Collapse
|
8
|
Beirne DF, Dalla Via M, Velasco-Torrijos T, Montagner D. Metal-Tyrosine Kinase Inhibitors: Targeted metal-drug conjugates. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Metal Complexes in Target-Specific Anticancer Therapy: Recent Trends and Challenges. J CHEM-NY 2022. [DOI: 10.1155/2022/9261683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer is characterized by abnormal cell differentiation in or on the part of the body. The most commonly used chemotherapeutic drugs are developed to target rapidly dividing cells, such as cancer cells, but they also damage healthy epithelial cells. This has serious consequences for normal cells and become responsible for the development of various disorders. Several strategies for delivering the cytotoxic drugs to cancerous sites that limit systemic toxicity and other adverse effects have recently been evolved. Among them, biomolecule-conjugated metal complexes-based cancer targeting strategies have shown tremendous advantages in cancer therapy. This review focuses on several chemoselective biomolecules-bound metal complexes as prospective cancer therapy-targeted agents. In this review, we presented the details of the various extra- and intracellular targeting mechanisms in cancer therapy. We also addressed the current clinical issues and recent therapeutic strategies in targeted cancer therapy that may pave a way for the future direction of metal complexes-based targeted cancer therapy.
Collapse
|
10
|
Jana A, Kundu P, Paul S, Kondaiah P, Chakravarty AR. Cobalt(III) Complexes for Light-Activated Delivery of Acetylacetonate-BODIPY, Cellular Imaging, and Photodynamic Therapy. Inorg Chem 2022; 61:6837-6851. [PMID: 35471858 DOI: 10.1021/acs.inorgchem.2c00150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cobalt(III) complexes [Co(TPA)(L1)](ClO4)2 (1), [Co(4-COOH-TPA)(L1)](ClO4)2 (2), [Co(TPA)(L2)]Cl2 (3), and [Co(4-COOH-TPA)(L2)]Cl2 (4) having acetylacetonate-linked boron-dipyrromethene ligands (L1, acac-BODIPY; L2, acac-diiodo-BODIPY) were prepared and characterized, and their utility as bioimaging and phototherapeutic agents was evaluated (TPA, tris-(2-pyridylmethyl)amine; 4-COOH-TPA, 2-((bis-(2-pyridylmethyl)amino)methyl)isonicotinic acid). HL1, HL2, and complex 1 were structurally characterized by X-ray crystallography. Complexes 1 and 2 on photoactivation or in a reducing environment (excess GSH, ascorbic acid, and 3-mercaptopropionic acid) released the acac-BODIPY ligand. They exhibited strong absorbance near 501 nm (ε ∼ (5.2-5.8) × 104 M-1 cm-1) and emission bands near 513 nm (ΦF ∼ 0.13, λex = 490 nm) in dimethyl sulfoxide (DMSO). Complexes 3 and 4 with absorption maxima at ∼536 and ∼538 nm (ε ∼ (1.2-1.8) × 104 M-1 cm-1), respectively, afforded high singlet oxygen quantum yield (ΦΔ ∼ 0.79) in DMSO. Complexes 1-4 showed Co(III)-Co(II) redox responses near -0.2 V versus saturated calomel electrode (SCE) in dimethylformamide (DMF)-0.1 M tetrabutylammonium perchlorate (TBAP). The photocleavage of pUC19 DNA by complex 4 revealed the formation of both singlet oxygen and superoxide anion radicals as the reactive oxygen species (ROS). Confocal fluorescence microscopy showed the selective accumulation of complex 1 in the endoplasmic reticulum (ER) in A-549 cells. Complex 4 exhibited a high phototherapeutic index value (PI > 7000) in HeLa cancer cells (IC50 ∼ 0.007 μM in visible light of 400-700 nm, total dose ∼5 J cm-2). The ancillary ligands in the complexes demonstrated a structure-activity relationship and modulated the Co(III)-Co(II) redox potential, the complex solubility, acac-BODIPY ligand release kinetics, and phototherapeutic efficacy.
Collapse
|
11
|
Chen YT, Zhang SN, Wang ZF, Wei QM, Zhang SH. Discovery of thirteen cobalt(II) and copper(II) salicylaldehyde Schiff base complexes that induce apoptosis and autophagy in human lung adenocarcinoma A549/DDP cells and that can overcome cisplatin resistance in vitro and in vivo. Dalton Trans 2022; 51:4068-4078. [PMID: 35179159 DOI: 10.1039/d1dt03749h] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, 13 transition metal complexes, namely, [Cu(L1H)(H2O)2]·(H2O)·NO3 (1), [Cu(LnH2)2]·(NO3)·(H2O)2 (2, n = 2; 3, n = 3; 4, n = 4; 5, n = 5), [Co(LnH)2]2·(H2O)0.5 (6, n = 2; 7, n = 3; 8, n = 4; 9, n = 5), [Cu(L6H)0.5(L10H)0.5(phen)]·(CH3OH)0.25 (10), [Cu(L11H) (phen)]4·(H2O)9 (11), [Cu(L8H)0.27(L12H)0.73(phen)]4·(H2O)5.5(CH3OH) (12), and [Cu(L9H) (phen)]3·(H2O)7·(CH3OH) (13), were synthesized using Schiff base ligands and characterized by elemental analysis (EA), infrared spectroscopy (IR), and single-crystal X-ray diffraction (SC-XRD). Compared with complexes 1-9, complexes 10-13 displayed stronger cytotoxic activities against the tested A549/DDP cancer cells (IC50 = 0.97-3.31 μM), with differences greater than one order of magnitude. Moreover, complexes 11 and 13 could induce apoptosis and autophagy in A549/DDP cells via the mitochondrial dysfunction pathway that affects the regulation of autophagy- and mitochondrial-related proteins. Importantly, the results indicate that the two novel salicylaldehyde Schiff base analogs, 11 and 13, exhibited pronounced and selective activity against A549/DDP xenografts in vivo.
Collapse
Affiliation(s)
- Ya-Ting Chen
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P R China. .,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China
| | - Shao-Nan Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China
| | - Zhen-Feng Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China
| | - Qing-Min Wei
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Shu-Hua Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P R China. .,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China
| |
Collapse
|
12
|
Mathuber M, Gutmann M, La Franca M, Vician P, Laemmerer A, Moser P, Keppler BK, Berger W, Kowol CR. Development of a cobalt(iii)-based ponatinib prodrug system. Inorg Chem Front 2021; 8:2468-2485. [PMID: 34046181 PMCID: PMC8129988 DOI: 10.1039/d1qi00211b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Receptor tyrosine kinase inhibitors have become a central part of modern targeted cancer therapy. However, their curative potential is distinctly limited by both rapid resistance development and severe adverse effects. Consequently, tumor-specific drug activation based on prodrug designs, exploiting tumor-specific properties such as hypoxic oxygen conditions, is a feasible strategy to widen the therapeutic window. After proof-of-principal molecular docking studies, we have synthesized two cobalt(iii) complexes using a derivative of the clinically approved Abelson (ABL) kinase and fibroblast growth factor receptor (FGFR) inhibitor ponatinib. Acetylacetone (acac) or methylacetylacetone (Meacac) have been used as ancillary ligands to modulate the reduction potential. The ponatinib derivative, characterized by an ethylenediamine moiety instead of the piperazine ring, exhibited comparable cell-free target kinase inhibition potency. Hypoxia-dependent release of the ligand from the cobalt(iii) complexes was proven by changed fluorescence properties, enhanced downstream signaling inhibition and increased in vitro anticancer activity in BCR-ABL- and FGFR-driven cancer models. Respective tumor-inhibiting in vivo effects in the BCR-ABL-driven K-562 leukemia model were restricted to the cobalt(iii) complex with the higher reduction potential and confirmed in a FGFR-driven urothelial carcinoma xenograft model. Summarizing, we here present for the first time hypoxia-activatable prodrugs of the clinically approved tyrosine kinase inhibitor ponatinib and a correlation of the in vivo activity with their reduction potential.
Collapse
Affiliation(s)
- Marlene Mathuber
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Straße 42 1090 Vienna Austria
| | - Michael Gutmann
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
| | - Mery La Franca
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo via Archirafi 32 90123 Palermo Italy
| | - Petra Vician
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
| | - Anna Laemmerer
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| | - Patrick Moser
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Straße 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Straße 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| |
Collapse
|