1
|
Peng SS, Liu S, Shao XB, Zhang K, Liu Y, Wang Y, Tan P, Yan J, Sun LB. Calcium single atoms stabilized by nitrogen coordination in metal-organic frameworks as efficient solid base catalysts. J Colloid Interface Sci 2025; 678:88-94. [PMID: 39241450 DOI: 10.1016/j.jcis.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Considerable attention has been paid to the preparation of single-atom solid base catalysts (SASBCs) owing to their high activity and maximized utilization of basic sites. At present, the reported fabrication methods of SASBCs, such as two-step reduction strategy and sublimation capture strategy, require high temperature. Such a high activation temperature is easy to cause the sublimation loss of alkali or alkaline earth metal atoms and destructive to the support structure. Herein, a new SASBC, Ca1/UiO-67-BPY, is fabricated, in which the alkaline earth metal Ca sites are immobilized onto N-rich metal-organic framework UiO-67-BPY at room temperature. The results show that the atomic configuration of Ca single atoms is coordinated by two N atoms in the framework. The obtained Ca SASBC possesses ordered structure and exhibits high product yield of 87.2% in the Knoevenagel reaction between benzaldehyde and malononitrile. Furthermore, thanks to the Ca single atoms sites anchored on UiO-67-BPY, the Ca1/UiO-67-BPY catalyst also shows good stability during cycles. This work might offer new insight in designing SASBCs for different base-catalyzed reactions.
Collapse
Affiliation(s)
- Song-Song Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Sai Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiang-Bin Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Kai Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Peng Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Juntao Yan
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
2
|
Zhao B, Li C, Hu T, Gao Y, Fan L, Zhang X. Robust {Pb 10}-Cluster-Based Metal-Organic Framework for Capturing and Converting CO 2 into Cyclic Carbonates under Mild Conditions. Inorg Chem 2024; 63:14183-14192. [PMID: 39010257 DOI: 10.1021/acs.inorgchem.4c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Developing a highly active catalyst that can efficiently capture and convert carbon dioxide (CO2) into high-value-added energy materials remains a severe challenge, which inspires us to explore effective metal-organic frameworks (MOFs) with high chemical stability and high-density active sites. Herein, we report a robust 3D lead(II)-organic framework of {(Me2NH2)2[Pb5(PTTPA)2(H2O)3]·2DMF·3H2O}n (NUC-111) with unreported [Pb10(COO)22(H2O)6] clusters (abbreviated as {Pb10}) as nodes (H6PTTPA = 4,4',4″-(pyridine-2,4,6-triyl)triisophthalic acid). After thermal activation, NUC-111a is functionalized by the multifarious symbiotic acid-base active sites of open Pb2+ sites and uncoordinated pyridine groups on the inner surface of the void volume. Gas adsorption tests confirm that NUC-111a displays a higher separation performance for mixed gases of f CO2 and CH4 with the selectivity of CO2/CH4 at 273 K and 101 kPa being 31 (1:99, v/v), 23 (15:85, v/v), and 8 (50:50, v/v), respectively. When the temperature rises to 298 K, the selectivity of CO2/CH4 at 101 kPa is 26 (1:99, v/v), 22 (15:85, v/v), and 11 (50:50, v/v). Moreover, activated NUC-111a exhibited excellent catalytic performance, stability, and recyclability for the cycloaddition of CO2 with epoxides under mild conditions. Hence, this work provides valuable insight into designing MOFs with multifunctionality for CO2 capture, separation, and conversion.
Collapse
Affiliation(s)
- Bo Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Chong Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Yanpeng Gao
- College of Chemical Engineering, Ordos Institute of Technology, Ordos 017000, P. R. China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
3
|
Jin S, Fu Y, Jie K, Dai H, Luo YJ, Ye L, Zhou C, Xu W. High-Entropy Lanthanide-Organic Framework as an Efficient Heterogeneous Catalyst for Cycloaddition of CO 2 with Epoxides and Knoevenagel Condensation. Chemistry 2024; 30:e202400756. [PMID: 38727558 DOI: 10.1002/chem.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 06/19/2024]
Abstract
Multimetallic synergistic effects have the potential to improve CO2 cycloesterification and Knoevenagel reaction processes, outperforming monometallic MOFs. The results demonstrate superior performance in these processes. To investigate this, we created and characterized a selection of single-component Ln(III)-MOFs (Ln=Eu, Tb, Gd, Dy, Ho) and high-entropy lanthanide-organic framework (HE-LnMOF) using solvent-thermal conditions. The experiments revealed that HE-LnMOF exhibited heightened catalytic efficiency in CO2 cycloesterification and Knoevenagel reactions compared to single-component Ln(III) MOFs. Moreover, the HE-LnMOF displayed significant stability, maintaining their structural integrity after five cycles while sustaining elevated conversion and selectivity rates. The feasible mechanisms of catalytic reactions were also discussed. HE-LnMOF possess multiple unsaturated metal centers, acting as Lewis acid sites, with oxygen atoms connecting the metal, and hydroxyl groups on the ligand serving as base sites. This study introduces a novel method for synthesizing HE-LnMOF and presents a fresh application of HE-LnMOF for converting CO2.
Collapse
Affiliation(s)
- Siyang Jin
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Yu Fu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Kecheng Jie
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023
| | - Huan Dai
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Yun Jie Luo
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Liang Ye
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Chaohui Zhou
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| |
Collapse
|
4
|
Qiao N, Xin XY, Wang WM, Wu ZL, Cui JZ. Two novel Ln 8 clusters bridged by CO 32- effectively convert CO 2 into oxazolidinones and cyclic carbonates. Dalton Trans 2023. [PMID: 37466166 DOI: 10.1039/d3dt01465g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
It is difficult and challenging to design and construct high-nuclearity Ln(III)-based clusters due to the high coordination numbers and versatile coordination geometries of Ln(III) ions. Herein, two novel octanuclear Ln(III)-based clusters [Ln8(H2L-)4(HL2-)4(NO3)6 (CO3)2](NO3)2·2CH3CN (Ln = Nd (1) and Sm (2)) have been synthesized under solvothermal conditions. The X-ray single analysis reveals that both 1 and 2 are octanuclear structures and the eight central Ln(III) ions are bridged by two CO32- anions. Catalytic study revealed that 1 and 2 can effectively catalyze the cycloaddition reaction of CO2 and aziridines or epoxides simultaneously under mild conditions. What is more, cluster 1, as a heterogeneous catalyst, can be reused at least three times without obvious loss in catalytic activity for coupling of CO2 and epoxides. To our knowledge, cluster 1 is the first Ln(III)-based cluster catalyst used for the conversion of CO2 with aziridines or epoxides simultaneously. This work provides a successful strategy to integrate high-nuclear Ln(III)-based clusters for CO2 conversion, which may open a new space for the construction of multifunctional high-nuclear Ln(III)-based clusters as efficient catalysts for CO2 conversion.
Collapse
Affiliation(s)
- Na Qiao
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, China.
| | - Xiao-Yan Xin
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, China.
| | - Wen-Min Wang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, China.
- Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Zhi-Lei Wu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China.
- Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Jian-Zhong Cui
- Department of Chemistry, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Di Y, Chen Y, Cao Y, Cui X, Liu Y, Zhou C, Di Y. The Investigation of CO2 Chemical Fixation and Fluorescent Recognition for YbIII-Organic Framework. Catal Letters 2023. [DOI: 10.1007/s10562-023-04270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Le M, Ni QL, Zeng LH, Yuan CY, Wang XJ, Li SM, Gui LC. Construction of Acylamide-functionalized MOFs for efficient catalysis on the conversion of CO2. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Lv H, Chen H, Fan L, Zhang X. Nanocage-Based Tb 3+-Organic Framework for Efficiently Catalyzing the Cycloaddition Reaction of CO 2 with Epoxides and Knoevenagel Condensation. Inorg Chem 2022; 61:15558-15568. [DOI: 10.1021/acs.inorgchem.2c02302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
8
|
A highly robust lutecium(III)-organic framework for the high catalytic performance on the chemical fixation CO2. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Sinchow M, Konno T, Rujiwatra A. Reversible Structural Transformation and Catalytic Potential of Lanthanide-Azobenzenetetracarboxylates. Inorg Chem 2022; 61:10383-10392. [PMID: 35763789 DOI: 10.1021/acs.inorgchem.2c00963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inspired by the catalytic potential of lanthanide coordination polymers of 3,3',5,5'-azobenzenetetracarboxylic acid (H4abtc), two new isostructural [Ln2III(Habtc)2(DMSO)4]·DMSO·H2O (LnIII = SmIII (I), EuIII = (II), DMSO = dimethyl sulfoxide) were synthesized and characterized. Their single-crystal structures were elucidated and described. Structural transformations of II in the solid state prompted by ligand substitution and thermal treatment were studied, from which genuine reversible transformation of II to [EuIII(Habtc)(H2O)4]·3H2O (II') and [EuIII(Habtc)(H2O)2]·2H2O (II″) was revealed. This illustrates the rare case of reversible transformation in lanthanide coordination polymers. The transformation between II' and II″ was also investigated. Structural transformations among these frameworks are discussed with regard to the coordination environment of EuIII, coordination modes of Habtc3-, and similarities and disparities in framework architecture and registration. In addition, the catalytic performance of II with and without the prior activation in CO2 cycloaddition reaction with epichlorohydrin was studied in comparison with II' and II″. The excellent performance of II disregarding the activation process has been demonstrated with the maximum turnover number and turnover frequency of 7682 and 1921 h-1, respectively, for the activated II and 7142 and 1786 h-1, respectively, for the nonactivated II. The maintenance of the catalytic efficiency over 10 cycles of the catalysis and the regeneration process is illustrated and discussed with respect to structural transformation.
Collapse
Affiliation(s)
- Malee Sinchow
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Apinpus Rujiwatra
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
10
|
Huang GQ, Chen J, Huang YL, Wu K, Luo D, Jin JK, Zheng J, Xu SH, Lu W. Mixed-Linker Isoreticular Zn(II) Metal-Organic Frameworks as Brønsted Acid-Base Bifunctional Catalysts for Knoevenagel Condensation Reactions. Inorg Chem 2022; 61:8339-8348. [PMID: 35575208 DOI: 10.1021/acs.inorgchem.2c00941] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multicomponent metal-organic frameworks (MOFs) have received an increasing amount of attention due to their potential to produce new topologies, pore metrics, and functionalities compared to MOFs with a single metal cluster and one organic linker. Herein, five isoreticular Zn MOFs were obtained by mixing two types of linear ditopic linkers in a one-pot solvothermal synthesis. Interestingly, in the resulting Zn MOFs a six-connected cyclic trinuclear Zn(II) cluster and an eight-connected linear trinuclear Zn(II) cluster coexist, leading to an uncommon (6,8)-connected network. Catalytic activities toward the solvent-free Knoevenagel reactions were observed for all of these MOFs. Further experimental and computational studies suggest that they are Brønsted acid-base bifunctional catalysts. Through chemical modifications of dicarboxylate ligands, including their aromatic backbones and substituents, we have successfully implemented reticular chemistry for the modulations of pore sizes, surface areas, and catalytic performances in a series of four-component isoreticular MOFs.
Collapse
Affiliation(s)
- Guo-Quan Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Jun Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Kun Wu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Ji-Kang Jin
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Shi-Hai Xu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
11
|
Chen H, Liu S, Lv H, Qin QP, Zhang X. Nanoporous {Y 2}-Organic Frameworks for Excellent Catalytic Performance on the Cycloaddition Reaction of Epoxides with CO 2 and Deacetalization-Knoevenagel Condensation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18589-18599. [PMID: 35417126 DOI: 10.1021/acsami.2c02929] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stable metal-organic frameworks containing periodically arranged nanosized pores and active Lewis acid-base active sites are considered as ideal candidates for efficient heterogeneous catalysis. Herein, the exquisite combination of [Y2(CO2)7(H2O)2] cluster (abbreviated as {Y2}) and multifunctional linker of 2,4,6-tri(2,4-dicarboxyphenyl)pyridine (H6TDP) led to a nanoporous framework of {[Y2(TDP)(H2O)2]·5H2O·4DMF}n (NUC-53, NUC = North University of China), which is a rarely reported binuclear three-dimensional (3D) framework with hierarchical tetragonal-microporous (0.78 nm) and octagonal-nanoporous (1.75 nm) channels. The inner walls of these channels are aligned by {Y2} clusters and plentifully coexisted Lewis acid-base sites of YIII ions and Npyridine atoms. Furthermore, NUC-53 has a quite large void volume of ∼65.2%, which is significantly higher than most documented 3D rare-earth-based MOFs. The performed catalytic experiments exhibited that activated NUC-53 showed a high catalytic activity on the cycloaddition reactions of CO2 with styrene oxide under mild conditions with excellent turnover number (TON: 1980) and turnover frequency (TOF: 495 h-1). Moreover, the deacetalization-Knoevenagel condensation reactions of benzaldehyde dimethyl acetal and malononitrile could be efficiently prompted by the heterogeneous catalyst of NUC-53. These findings not only pave the way for the construction of nanoporous MOF based on rare-earth clusters with a variety of catalytic activities but also provide some new insights into the catalytic mechanism.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Qi-Pin Qin
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, School of Chemistry and Food Science, Yulin Normal University, Yulin 537000, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
12
|
Zhang X, Zhang Y, Zhou W, Liu H, Zhang D, Hu H, Lv C, Liu S, Geng L. Construction of novel cluster-baseed MOF as multifunctional platform for CO2 catalytic transformation and dye selective adsorption. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Qiao J, Zhang B, Yu X, Zou X, Liu X, Zhang L, Liu Y. A Stable Y(III)-Based Amide-Functionalized Metal-Organic Framework for Propane/Methane Separation and Knoevenagel Condensation. Inorg Chem 2022; 61:3708-3715. [PMID: 35167753 DOI: 10.1021/acs.inorgchem.1c03924] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, a Y(III)-based metal-organic framework, JLU-MOF112 {[Y3(μ3-O)2(μ3-OH)(H2O)2(BTCTBA)2]·2[(CH3)2NH2]·5DMF·C6H5Cl·4H2O}, has been successfully synthesized under solvothermal conditions. JLU-MOF112 was constructed with amide-functionalized tricarboxylate ligands and Y(III)-based infinite chains, where the Y3 repeating units are arranged in a trans order. The overall framework could be viewed as a novel (3,5)-connected net with two types of channels along the [100] and [010] directions. JLU-MOF112 possesses a large BET surface area (1553 m2 g-1), a permanent pore volume (0.67 cm3 g-1), and outstanding thermal and chemical stability, which give JLU-MOF112 potential for the purification of natural gas, especially the equimolar separation of C3H8/CH4 with a high selectivity of 176. In addition, benefiting from the amide functional groups as Brønsted basic sites and the exposure of open metal sites as Lewis acid sites after activation, JLU-MOF112 can serve as a high-efficiency heterogeneous catalyst for Knoevenagel condensation by the reactions of malononitrile with benzaldehyde (yield of 98%, turnover number of 392, and turnover frequency of 3.27 min-1) and diverse aldehyde compounds. A rational mechanism was put forward that the Knoevenagel condensation was catalyzed by the synergistic effect of the Lewis acid sites and Brønsted basic sites, engendering the polarization of the carbonyl groups and the deprotonation of the methylene groups for nucleophilic attack.
Collapse
Affiliation(s)
- Junyi Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Borong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xueyue Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaoqin Zou
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China
| | - Xinyao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Sinochem Holdings Corporation Ltd., Beijing 100031, P. R. China
| | - Lirong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
14
|
Çiftçi E, Alp Arıcı T, Arıcı M, Erer H, Yeşilel OZ. Synthesis, characterization and dye adsorption property of a 2D nickel( ii)-coordination polymer constructed from tetracarboxylic acid and 1,3-bis(imidazol-1-yl-methyl)benzene. CrystEngComm 2022. [DOI: 10.1039/d2ce00897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new Ni(ii)-coordination polymer, {[Ni2(μ4-L)(μ-mbix)2]·2H2O}n (1), was synthesized; the methylene blue (MB) dye adsorption property of compound 1 was examined and the maximum MB adsorption capacity of the compound is 194.67 mg g−1 at pH = 10 at room temperature.
Collapse
Affiliation(s)
- Esengül Çiftçi
- Department of Chemistry, Faculty of Science, Eskişehir Osmangazi University, 26040 Eskişehir, Türkiye
| | - Tuğba Alp Arıcı
- Department of Chemical Technology, Emet Vocational School, Kütahya Dumlupınar University, 43700 Kütahya, Türkiye
| | - Mürsel Arıcı
- Department of Chemistry, Faculty of Science, Eskişehir Osmangazi University, 26040 Eskişehir, Türkiye
| | - Hakan Erer
- Department of Chemistry, Faculty of Science, Eskişehir Osmangazi University, 26040 Eskişehir, Türkiye
| | - Okan Zafer Yeşilel
- Department of Chemistry, Faculty of Science, Eskişehir Osmangazi University, 26040 Eskişehir, Türkiye
| |
Collapse
|
15
|
Zhang T, Chen H, Liu S, Lv H, Zhang X, Li Q. Highly Robust {Ln 4}-Organic Frameworks (Ln = Ho, Yb) for Excellent Catalytic Performance on Cycloaddition Reaction of Epoxides with CO 2 and Knoevenagel Condensation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04260] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tao Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, People’s Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Qiaoling Li
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
16
|
Thammakan S, Kuwamura N, Chiangraeng N, Nimmanpipug P, Konno T, Rujiwatra A. Highly disordering nanoporous frameworks of lanthanide-dicarboxylates for catalysis of CO2 cycloaddition with epoxides. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Rodríguez-González FE, Niebla V, Velázquez-Tundidor M, Tagle LH, Martin-Trasanco R, Coll D, Ortiz PA, Escalona N, Pérez E, Jessop IA, Terraza CA, Tundidor-Camba A. A new porous organic polymer containing Tröger's base units: Evaluation of the catalytic activity in Knoevenagel condensation reaction. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Chen H, Feng L, Zhang X, Gao ZY, Sun D. Robust Heterometallic CoIILaIII2–Organic Framework for the Highly Efficient Separation of Acetylene from Light Hydrocarbon Mixtures. Inorg Chem 2021; 60:2878-2882. [DOI: 10.1021/acs.inorgchem.0c03537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, and Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, People’s Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People’s Republic of China
| |
Collapse
|