1
|
Bilyachenko AN, Khrustalev VN, Huang Z, Dubinina KD, Shubina ES, Lobanov NN, Sun D, Alegria ECBA, Pombeiro AJL. An ionic Cu 9Na 4-phenylsilsesquioxane/bis(triphenylphosphine)iminium complex: synthesis, unique structure, and catalytic activity. NANOSCALE 2024; 16:19266-19275. [PMID: 39352192 DOI: 10.1039/d4nr02298j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The synthesis of a high nuclear (Cu9Na4) complex 1via the self-assembly of copper(II) phenylsilsesquioxane induced by complexation with bis(triphenylphosphine)iminium chloride (PPNCl) was successfully achieved. This complex, which includes two bis(triphenylphosphine)iminium PPN+ cations, represents the first example of a metallasilsesquioxane/phosphazene compound. The Cu9Na4-silsesquioxane cage demonstrates a nontrivial combination of two pairs of Si6-cyclic/Si4-acyclic silsesquioxane ligands and a fusion of two Si10Cu4Na2 fragments, combined via the central ninth copper ion. The catalytic efficacy of the copper(II) compound (1) was evaluated through the peroxidative oxidation of toluene using tert-butyl hydroperoxide (t-BuOOH) as the oxidant. The primary oxidation products were benzaldehyde (BAL), benzyl alcohol (BOL), and benzoic acid (BAC), with BAC being the predominant product, especially in acetonitrile (NCMe). The formation of cresols, indicating oxidation at the aromatic ring, was observed only in water and under microwave irradiation (MW) in NCMe. Remarkably, the highest total yield of 40.3% was achieved in water with an acidic additive at 80 °C, highlighting the crucial role of the acid additive in enhancing reaction efficiency and selectivity. This study underscores our copper(II) complex as a highly effective catalyst for toluene oxidation, demonstrating its significant potential for fine-tuning reaction parameters to optimize yields and selectivity. The unprecedented structure of the complex and its promising catalytic performance pave the way for further advancements in the fields of metallasilsesquioxane chemistry and catalysis.
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia.
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Zhibin Huang
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
| | - Kristina D Dubinina
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
| | - Elena S Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia.
| | - Nikolai N Lobanov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
| | - Di Sun
- Shandong University, Department of Chemistry and Chemical Engineering, Shanda South Road 27, 250100 Jinan, China
| | - Elisabete C B A Alegria
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
| |
Collapse
|
2
|
Zueva AY, Bilyachenko AN, Arteev IS, Khrustalev VN, Dorovatovskii PV, Shul'pina LS, Ikonnikov NS, Gutsul EI, Rahimov KG, Shubina ES, Reis Conceição N, Mahmudov KT, Guedes da Silva MFC, Pombeiro AJL. A Family of Hexacopper Phenylsilsesquioxane/Acetate Complexes: Synthesis, Solvent-Controlled Cage Structures, and Catalytic Activity. Chemistry 2024; 30:e202401164. [PMID: 38551412 DOI: 10.1002/chem.202401164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Convenient self-assembly synthesis of copper(II) complexes via double (phenylsilsesquioxane and acetate) ligation allows to isolate a family of impressive sandwich-like cage compounds. An intriguing feature of these complexes is the difference in the structure of a pair of silsesquioxane ligands despite identical (Cu6) nuclearity and number (four) of acetate fragments. Formation of particular combination of silsesquioxane ligands (cyclic/cyclic vs condensed/condensed vs cyclic/condensed) was found to be dependent on the synthesis/crystallization media. A combination of Si4-cyclic and Si6-condensed silsesquioxane ligands is a brand new feature of cage metallasilsesquioxanes. A representative Cu6-complex (4) (with cyclic silsesquioxanes) exhibited high catalytic activity in the oxidation of alkanes and alcohols with peroxides. Maximum yield of the products of cyclohexane oxidation attained 30 %. The compound 4 was also tested as catalyst in the Baeyer-Villiger oxidation of cyclohexanone by m-chloroperoxybenzoic acid: maximum yields of 88 % and 100 % of ϵ-caprolactone were achieved upon conventional heating at 50 °C for 4 h and MW irradiation at 70 or 80 °C during 30 min, respectively. It was also possible to obtain the lactone (up to 16 % yield) directly from the cyclohexane via a tandem oxidation/Baeyer-Villiger oxidation reaction using the same oxidant.
Collapse
Affiliation(s)
- Anna Y Zueva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Alexey N Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Ivan S Arteev
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
- Higher Chemical College, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047, Moscow, Russia
| | - Victor N Khrustalev
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Pl., 123182, Moscow, Russian Federation
| | - Lidia S Shul'pina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
| | - Nikolay S Ikonnikov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
| | - Evgenii I Gutsul
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
| | - Karim G Rahimov
- Baku State University, Z. Xalilov Str. 23, Az 1148, Baku, Azerbaijan
| | - Elena S Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
| | - Nuno Reis Conceição
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Kamran T Mahmudov
- Baku State University, Z. Xalilov Str. 23, Az 1148, Baku, Azerbaijan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
3
|
Bilyachenko AN, Gutsul EI, Khrustalev VN, Chusova O, Dorovatovskii PV, Aliyeva VA, Paninho AB, Nunes AVM, Mahmudov KT, Shubina ES, Pombeiro AJL. A Family of Cagelike Mn-Silsesquioxane/Bathophenanthroline Complexes: Synthesis, Structure, and Catalytic and Antifungal Activity. Inorg Chem 2023; 62:15537-15549. [PMID: 37698451 DOI: 10.1021/acs.inorgchem.3c02040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
This study reports a novel family of cage manganesesilsesquioxanes prepared via complexation with bathophenanthroline (4,7-diphenyl-1,10-phenanthroline). The resulting Mn4-, Mn6Li2-, and Mn4Na-compounds exhibit several unprecedented cage metallasilsesquioxane structural features, including intriguing self-assembly of silsesquioxane ligands. Complexes were tested in vitro for fungicidal activity against seven classes of phytopathogenic fungi. The representative Mn4Na-complex acts as a catalyst in the cycloaddition of CO2 to epoxides under solvent-free conditions to form cyclic carbonates in good yields.
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
| | - Evgenii I Gutsul
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991 Moscow, Russia
| | - Olga Chusova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", Acad. Kurchatov Sq., 1, 123182 Moscow, Russia
| | - Vusala A Aliyeva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana B Paninho
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana V M Nunes
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Excellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan
| | - Elena S Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Armando J L Pombeiro
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
4
|
Bilyachenko AN, Arteev IS, Khrustalev VN, Shul'pina LS, Korlyukov AA, Ikonnikov NS, Shubina ES, Kozlov YN, Reis Conceição N, Guedes da Silva MFC, Mahmudov KT, Pombeiro AJL. Cage-like Cu 5Cs 4-Phenylsilsesquioxanes: Synthesis, Supramolecular Structures, and Catalytic Activity. Inorg Chem 2023; 62:13573-13586. [PMID: 37561666 DOI: 10.1021/acs.inorgchem.3c01989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A small family of nonanuclear Cu5Cs4-based phenylsilsesquioxanes 1-2 were prepared by a convenient self-assembly approach and characterized by X-ray diffraction studies. The compounds 1 and 2 show some unprecedented structural features such as the presence of a [Ph14Si14O28]14- silsesquioxane ligand and a CuII5CsI4 nuclearity in which the metal cations occupy unusual positions within the cluster. Copper ions are "wrapped" into a silsesquioxane matrix, while cesium ions are located in external positions. This resulted in cesium-involved aggregation of coordination polymer structures. Both compounds 1 and 2 realize specific metallocene (cesium-phenyl) linkage between neighboring cages. Compound 2 is evaluated as a catalyst in the Baeyer-Villiger (B-V) oxidation of cyclohexanone and tandem cyclohexane oxidation/B-V oxidation of cyclohexanone with m-chloroperoxybenzoic acid (mCPBA) as an oxidant, in an aqueous acetonitrile medium, and HNO3 as the promoter. A quantitative yield of ε-caprolactone was achieved under conventional heating at 50 °C for 4 h or MW irradiation for 30 min (for cyclohexanone as substrate); 17 and 19% yields of lactone upon MW irradiation at 80 °C for 30 min and heating at 50 °C for 4 h, respectively (for cyclohexane as a substrate), were achieved. Complex 2 was evaluated as a catalyst for the oxidation of alkanes to alkyl hydroperoxides and alcohols to ketones with peroxides at 60 °C in acetonitrile. The maximum yield of cyclohexane oxidation products was 30%. Complex 2 exhibits high activity in the oxidation of alcohols.
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, Moscow 117198, Russia
| | - Ivan S Arteev
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
- Higher Chemical College, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, Moscow 117198, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Lidia S Shul'pina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
| | - Alexander A Korlyukov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
| | - Nikolay S Ikonnikov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
| | - Elena S Shubina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
| | - Yuriy N Kozlov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina, dom 4, Moscow 119991, Russia
- Plekhanov Russian University of Economics, Stremyannyi Pereulok 36, Moscow 117997, Russia
| | - Nuno Reis Conceição
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Excellence Center, Baku State University, Z. Xalilov Str. 23, Baku Az 1148, Azerbaijan
| | - Armando J L Pombeiro
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, Moscow 117198, Russia
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| |
Collapse
|
5
|
Shiau AA, Lee HB, Oyala PH, Agapie T. Mn IV4O 4 Model of the S 3 Intermediate of the Oxygen-Evolving Complex: Effect of the Dianionic Disiloxide Ligand. Inorg Chem 2023; 62:1791-1796. [PMID: 35829634 PMCID: PMC11472716 DOI: 10.1021/acs.inorgchem.2c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthetic complexes provide useful models to study the interplay between the structure and spectroscopy of the different Sn-state intermediates of the oxygen-evolving complex (OEC) of photosystem II (PSII). Complexes containing the MnIV4 core corresponding to the S3 state, the last observable intermediate prior to dioxygen formation, remain very rare. Toward the development of synthetic strategies to stabilize highly oxidized tetranuclear complexes, ligands with increased anion charge were pursued. Herein, we report the synthesis, electrochemistry, SQUID magnetometry, and electron paramagnetic resonance spectroscopy of a stable MnIV4O4 cuboidal complex supported by a disiloxide ligand. The substitution of an anionic acetate or amidate ligand with a dianionic disiloxide ligand shifts the reduction potential of the MnIIIMnIV3/MnIV4 redox couple by up to ∼760 mV, improving stability. The S = 3 spin ground state of the siloxide-ligated MnIV4O4 complex matches the acetate and amidate variants, in corroboration with the MnIV4 assignment of the S3 state of the OEC.
Collapse
Affiliation(s)
- Angela A Shiau
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Heui Beom Lee
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Paul H Oyala
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
6
|
A Novel Family of Cage-like (CuLi, CuNa, CuK)-phenylsilsesquioxane Complexes with 8-hydroxyquinoline Ligands: Synthesis, Structure, and Catalytic Activity. Molecules 2022; 27:molecules27196205. [PMID: 36234735 PMCID: PMC9571593 DOI: 10.3390/molecules27196205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The first examples of metallasilsesquioxane complexes, including ligands of the 8-hydroxyquinoline family 1–9, were synthesized, and their structures were established by single crystal X-ray diffraction using synchrotron radiation. Compounds 1–9 tend to form a type of sandwich-like cage of Cu4M2 nuclearity (M = Li, Na, K). Each complex includes two cisoid pentameric silsesquioxane ligands and two 8-hydroxyquinoline ligands. The latter coordinates the copper ions and corresponding alkaline metal ions (via the deprotonated oxygen site). A characteristic (size) of the alkaline metal ion and a variation of characteristics of nitrogen ligands (8-hydroxyquinoline vs. 5-chloro-8-hydroxyquinoline vs. 5,7-dibromo-8-hydroxyquinoline vs. 5,7-diiodo-8-hydroxyquinoline) are highly influential for the formation of the supramolecular structure of the complexes 3a, 5, and 7–9. The Cu6Na2-based compound 2 exhibits high catalytic activity towards the oxidation of (i) hydrocarbons by H2O2 activated with HNO3, and (ii) alcohols by tert-butyl hydroperoxide. Studies of kinetics and their selectivity has led us to conclude that it is the hydroxyl radicals that play a crucial role in this process.
Collapse
|
7
|
Bilyachenko AN, Gutsul EI, Khrustalev VN, Astakhov GS, Zueva AY, Zubavichus YV, Kirillova MV, Shul'pina LS, Ikonnikov NS, Dorovatovskii PV, Shubina ES, Kirillov AM, Shul'pin GB. Acetone Factor in the Design of Cu 4-, Cu 6-, and Cu 9-Based Cage Coppersilsesquioxanes: Synthesis, Structural Features, and Catalytic Functionalization of Alkanes. Inorg Chem 2022; 61:14800-14814. [PMID: 36059209 DOI: 10.1021/acs.inorgchem.2c02217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study describes a new feature in the self-assembly of cagelike copperphenylsilsesquioxanes: the strong influence of acetone solvates on cage structure formation. By this simple approach, a series of novel tetra-, hexa-, or nonacoppersilsesquioxanes were isolated and characterized. In addition, several new complexes of Cu4 or Cu6 nuclearity bearing additional nitrogen-based ligands (ethylenediamine, 2,2'-bipyridine, phenanthroline, bathophenanthroline, or neocuproine) were produced. Single-crystal X-ray diffraction studies established molecular architectures of all of the synthesized products. Several coppersilsesquioxanes represent a novel feature of cagelike metallasilsesquioxane (CLMS) in terms of molecular topology. A Cu4-silsesquioxane complex with ethylenediamine (En) ligands was isolated via the unprecedented self-assembly of a partly condensed framework of silsesquioxane ligands, followed by the formation of a sandwich-like cage. Two prismatic Cu6 complexes represent the different conformers─regular and elliptical hexagonal prisms, "cylinders", determined by the different orientations of the coordinated acetone ligands ("shape-switch effect"). A heterometallic Cu4Na4-sandwich-like derivative represents the first example of a metallasilsesquioxane complex with diacetone alcohol ligands formed in situ due to acetone condensation reaction. As a selected example, the compound [(Ph6Si6O11)2Cu4En2]·(acetone)2 was explored in homogeneous oxidation catalysis. It catalyzes the oxidation of alkanes to alkyl hydroperoxides with hydrogen peroxide and the oxidation of alcohols to ketones with tert-butyl hydroperoxide. Radical species take part in the oxidation of alkanes. Besides, [(Ph6Si6O11)2Cu4En2]·(acetone)2 catalyzes the mild oxidative functionalization of gaseous alkanes (ethane, propane, n-butane, and i-butane). Two different model reactions were investigated: (1) the oxidation of gaseous alkanes with hydrogen peroxide to give a mixture of oxygenates (alcohols, ketones, or aldehydes) and (2) the carboxylation of Cn gaseous alkanes with carbon monoxide, water, and potassium peroxodisulfate to give Cn+1 carboxylic acids (main products), along with the corresponding Cn oxygenates. For these reactions, the effects of acid promoter, reaction time, and substrate scope were explored. As expected for free-radical-type reactions, the alkane reactivity follows the trend C2H6 < C3H8 < n-C4H10 < i-C4H10. The highest total product yields were observed in the carboxylation of i-butane (up to 61% based on i-C4H10). The product yields and catalyst turnover numbers (TONs) are remarkable, given an inertness of gaseous alkanes and very mild reaction conditions applied (low pressures, 50-60 °C temperatures).
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
| | - Evgenii I Gutsul
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Grigorii S Astakhov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Anna Y Zueva
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
| | - Yan V Zubavichus
- Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis SB RAS, Nikolskii prosp., 1, Koltsovo 630559, Russia
| | - Marina V Kirillova
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Lidia S Shul'pina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Nikolay S Ikonnikov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Elena S Shubina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Georgiy B Shul'pin
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina, dom 4, Moscow 119991, Russia.,Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi pereulok 36, Moscow 117997, Russia
| |
Collapse
|
8
|
Astakhov GS, Khrustalev VN, Dronova MS, Gutsul EI, Korlyukov AA, Gelman D, Zubavichus YV, Novichkov DA, Trigub AL, Shubina ES, Bilyachenko AN. Cage-like manganesesilsesquioxanes: features of their synthesis, unique structure, and catalytic activity in oxidative amidations. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01054b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of Mn-based cage-like silsesquioxanes (and complexes with 1,10-phenanthroline) exhibits unique types of molecular architectures and catalytic activity in oxidative amidation reactions.
Collapse
Affiliation(s)
- Grigorii S. Astakhov
- Peoples’ Friendship University of Russia, Miklukho-Maklay Street, 6, 117198 Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Victor N. Khrustalev
- Peoples’ Friendship University of Russia, Miklukho-Maklay Street, 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Marina S. Dronova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Evgenii I. Gutsul
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov Str., 1, Moscow 117997, Russia
| | - Dmitri Gelman
- Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yan V. Zubavichus
- Boreskov Institute of Catalysis SB RAS, prosp. Akad. Lavrentieva, 5, Novosibirsk 630090, Russia
| | - Daniil A. Novichkov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 3, Moscow 119991, Russian Federation
| | - Alexander L. Trigub
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Elena S. Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Alexey N. Bilyachenko
- Peoples’ Friendship University of Russia, Miklukho-Maklay Street, 6, 117198 Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| |
Collapse
|
9
|
Sheng K, Wang R, Tang X, Jagodič M, Jagličić Z, Pang L, Dou JM, Gao ZY, Feng HY, Tung CH, Sun D. A Carbonate-Templated Decanuclear Mn Nanocage with Two Different Silsesquioxane Ligands. Inorg Chem 2021; 60:14866-14871. [PMID: 34533931 DOI: 10.1021/acs.inorgchem.1c02190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mild reaction of the preorganized silsesquioxane precursor with Mn(II) acetate under ambient conditions results in a mixed-valent {MnII6MnIII4} nanocage (SD/Mn10) which is protected by both acyclic trimer [Si3] and cyclic tetramer [Si4]. Serendipitous capture of atmospheric CO2 as a μ5-carbonate anion placed at the center supports the formation of the cluster. The magnetic analysis reveals the strong antiferromagnetic interactions between Mn ions. Moreover, the drop-casting film of SD/Mn10 shows photoelectric activity indicating its great potential as a semiconductor for photoelectric conversion applications.
Collapse
Affiliation(s)
- Kai Sheng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China.,School of Aeronautics, Shandong Jiaotong University, Ji'nan 250037, China
| | - Ran Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xinde Tang
- School of Aeronautics, Shandong Jiaotong University, Ji'nan 250037, China
| | - Marko Jagodič
- Institute of Mathematics, Physics, and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Zvonko Jagličić
- Institute of Mathematics, Physics, and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Laixue Pang
- School of Aeronautics, Shandong Jiaotong University, Ji'nan 250037, China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, China
| | - Hua-Yu Feng
- Center of Nanoelectronics and School of Microelectronics, Shandong University, Ji'nan 250100, China
| | - Chen-Ho Tung
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China
| |
Collapse
|