1
|
Rao Z, Cai W, Yan Y, Huang R, Wang F, Wang Z, Gao R, Chen G, Deng X, Lei X, Fu C. Hierarchical Ordered Mesoporous Sr 2Bi 4Ti 5O 18 Microflowers with Rich Oxygen Vacancies In Situ Assembled by Nanosheets for Piezo-Photocatalysis. Inorg Chem 2024. [PMID: 39486040 DOI: 10.1021/acs.inorgchem.4c03520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The Aurivillius phase layered perovskite ferroelectric material Sr2Bi4Ti5O18 (SBTO) exhibits spontaneous polarization and piezoelectric properties, which confer significant potential for piezo-photocatalysis. Its ability to enhance electron-hole separation while providing excellent fatigue resistance positions it as a promising candidate in this field. Defects were introduced to improve the structural polarization and photoelectrochemical properties of SBTO. SBTO nanocrystals, featuring a mixed structure of hierarchically ordered mesoporous microflowers and nanosheets, were successfully synthesized via the hydrothermal method. The SBTO sample synthesized at a lower hydrothermal temperature displayed optimal oxygen vacancy concentration and exhibited superior piezoelectric-photo synergistic degradation activity for organic pollutants. Additionally, corona polarization increases the macroscopic polarization of the SBTO photocatalyst, promoting the separation of photogenerated carriers. Finite element simulations confirmed that a single flower-like SBTO structure generates a higher piezoelectric potential compared to a sheet-like morphology. In conclusion, integrating self-assembled hierarchical structure design, ferroelectric polarization, and defect engineering forms an effective strategy for achieving high-performance SBTO-based layered perovskite piezo-photocatalysts.
Collapse
Affiliation(s)
- Zeping Rao
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Wei Cai
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, P. R. China
| | - Yan Yan
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Rui Huang
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Fengqi Wang
- Chengdu Development Center of Science and Technology of CAEP, Chengdu 610299, P. R. China
| | - Zhenhua Wang
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, P. R. China
| | - Rongli Gao
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, P. R. China
| | - Gang Chen
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, P. R. China
| | - Xiaoling Deng
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, P. R. China
| | - Xiang Lei
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, P. R. China
| | - Chunlin Fu
- School of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, P. R. China
| |
Collapse
|
2
|
Hu T, Li Y, Wang Y, Chen Y, Zhang J, Luo E, Lv B, Jia J. Controlled evolution of surface microstructure and phase boundary of ZnO nanoparticles for the multiple sensitization effects on triethylamine detection. NANOSCALE 2024; 16:11774-11785. [PMID: 38864550 DOI: 10.1039/d4nr01135j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
In ZnO gas sensors, donor defects (such as zinc interstitials and oxygen vacancies) are considered active sites for the chemical adsorption and ionization of oxygen on the surface of ZnO, which can significantly enhance the sensor's response. However, the influence of the surface microstructure and phase boundaries of ZnO nanoparticles on the chemical adsorption and ionization of surface oxygen has rarely been explored. In this study, we developed a mixed-phase ZnO nanoparticle gas sensor with a rich phase boundary showing 198-50 ppm improvement in response to triethylamine at 340 °C. This is attributed to the generation of defects originating from lattice mismatch at the ZnO - zincite phase boundaries, which providing more active sites for adsorption of oxygen and triethylamine molecules. This work demonstrates a feasible method of combining surface microstructure regulation with pyrolysis strategies to develop ZnO sensors with significantly enhanced gas response performance.
Collapse
Affiliation(s)
- Tianjun Hu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yifan Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Ying Wang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yaru Chen
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Junming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Ergui Luo
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Baoliang Lv
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| |
Collapse
|
3
|
Maheswaran H, Djearamane S, Tanislaus Antony Dhanapal AC, Wong LS. Cytotoxicity of green synthesized zinc oxide nanoparticles using Musa acuminata on Vero cells. Heliyon 2024; 10:e31316. [PMID: 38868065 PMCID: PMC11167271 DOI: 10.1016/j.heliyon.2024.e31316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) have become a highly regarded substance in various industries especially biologically synthesized ZnO NPs due to their adherence to the principles of green chemistry. However, concerns have been raised regarding the potential cytotoxic effects of ZnO NPs on biological systems. This study aimed to investigate and compare the cytotoxicity of ZnO NPs that were synthesized through chemical (C-ZnO NPs) and green approach using Musa acuminata leaf aqueous extract (Ma-ZnO NPs) on Vero cells. Characterization of ZnO NPs through Uv-Vis, FESEM, EDX, XRD, FTIR and XPS confirmed the successful synthesis of C- and Ma-ZnO NPs. MTT and ROS assays revealed that C- and Ma-ZnO NPs induced a concentration- and time-dependent cytotoxic effect on Vero cells. Remarkably, Ma-ZnO NPs showed significantly higher cell viability compared to C-ZnO NPs. The corelation of ROS and vell viability suggest that elevated ROS levels can lead to cell damage and even cell death. Flow cytometry analysis indicated that Ma-ZnO NPs exposed cells had more viable cells and a smaller cell population in the late and early apoptotic stage. Furthermore, more cells were arrested in the G1 phase upon exposure to C-ZnO NPs, which is associated with oxidative stress and DNA damage caused by ROS generation, proving its higher cytotoxicity than Ma-ZnO NPs. Similarly, time-dependent cytotoxicity and morphological alterations were observed in C- and Ma-ZnO NPs treated cells, indicating cellular damage. Furthermore, fluorescence microscopy also demonstrated a time-dependent increase in ROS formation in cells exposed to C- and Ma-ZnO NPs. In conclusion, the findings suggest that green ZnO NPs possess a favourable biocompatibility profile, exhibiting reduced cytotoxicity compared to chemically synthesized ZnO NPs on Vero cells. These results emphasize the potential of green synthesis methods for the development of safer and environmentally friendly ZnO NPs.
Collapse
Affiliation(s)
- Harshyini Maheswaran
- Department of Biomedical Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Sinouvassane Djearamane
- Department of Biomedical Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602 105, India
| | - Anto Cordelia Tanislaus Antony Dhanapal
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
4
|
Vasiljevic Z, Vunduk J, Bartolic D, Miskovic G, Ognjanovic M, Tadic NB, Nikolic MV. An Eco-friendly Approach to ZnO NP Synthesis Using Citrus reticulata Blanco Peel/Extract: Characterization and Antibacterial and Photocatalytic Activity. ACS APPLIED BIO MATERIALS 2024; 7:3014-3032. [PMID: 38597359 DOI: 10.1021/acsabm.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Emission of greenhouse gases and infectious diseases caused by improper agro-waste disposal has gained significant attention in recent years. To overcome these hurdles, agro-waste can be valorized into valuable bioactive compounds that act as reducing or stabilizing agents in the synthesis of nanomaterials. Herein, we report a simple circular approach using Citrus reticulata Blanco (C. reticulata) waste (peel powder/aqueous extract) as green reducing and capping/stabilizing agents and Zn nitrate/acetate precursors to synthesize ZnO nanoparticles (NPs) with efficient antimicrobial and photocatalytic activities. The obtained NPs crystallized in a hexagonal wurtzite structure and differed clearly in their morphology. UV-vis analysis of the nanoparticles showed a characteristic broad absorption band between 330 and 414 nm belonging to ZnO NPs. Fourier transform infrared (FTIR) spectroscopy of ZnO NPs exhibited a Zn-O band close to 450 cm-1. The band gap values were in the range of 2.84-3.14 eV depending on the precursor and agent used. The crystallite size obtained from size-strain plots from measured XRD patterns was between 7 and 26 nm, with strain between 16 and 4%. The highly crystalline nature of obtained ZnO NPs was confirmed by clear ring diffraction patterns and d-spacing values of the observed lattice fringes. ZnNPeelMan_400 and ZnNExtrMan showed good stability, as the zeta potential was found to be around -20 mV, and reduced particle aggregation. Photoluminescence analysis revealed different defects belonging to oxygen vacancies (VO+ and VO+2) and zinc interstitial (Zni) sites. The presence of oxygen vacancies on the surface of ZnAcExtrMan_400 and ZnAcPeelMan_400 increased antimicrobial activity, specifically against Gram-negative bacteria Escherichia coli (E. coli) and Salmonella enteritidis (S. enteritidis). ZnNExtrMan with a minimal inhibitory concentration of 0.156 mg/mL was more effective against Gram-positive bacteria Staphylococcus aureus (S. aureus), revealing a high influence of particle size and shape on antimicrobial activity. In addition, the photocatalytic activity of the ZnO NPs was examined by assessing the degradation of acid green dye in an aqueous solution under UV light irradiation. ZnAcPeelMan_400 exhibited excellent photocatalytic activity (94%) within 90 min after irradiation compared to other obtained ZnO NPs.
Collapse
Affiliation(s)
- Zorka Vasiljevic
- University of Belgrade-Institute for Multidisciplinary Research, 11030 Belgrade, Serbia
| | - Jovana Vunduk
- Institute of General and Physical Chemistry, 11158 Belgrade, Serbia
| | - Dragana Bartolic
- University of Belgrade-Institute for Multidisciplinary Research, 11030 Belgrade, Serbia
| | - Goran Miskovic
- Silicon Austria Laboratories GMBH, High Tech Campus Villach, A-9524 Villach, Austria
| | - Milos Ognjanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, 11000 Belgrade, Serbia
| | - Nenad B Tadic
- Faculty of Physics, University of Belgrade, 11000 Belgrade, Serbia
| | - Maria Vesna Nikolic
- University of Belgrade-Institute for Multidisciplinary Research, 11030 Belgrade, Serbia
| |
Collapse
|
5
|
Messai R, Ferhat MF, Serouti A, Nourelhouda B, Humayun M, Allag N, Zoukel A, Ghezzar MR, Bououdina M. Rapid synthesis of ZnO nanoparticles via gliding arc discharge: unveiling the impact of discharge time on particle properties and photocatalytic performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33885-33903. [PMID: 38691291 DOI: 10.1007/s11356-024-33442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Herein, we present a novel approach for the synthesis of ZnO nanoparticles (ZnO NPs) using a non-thermal plasma source generated by the gliding arc discharge-air system. The effect of discharge time on the physical and optical properties, as well as the photocatalytic performance of the as-fabricated ZnO NPs, was investigated. The characterization techniques revealed that the as-synthesized ZnO exhibit hexagonal Wurtzite structure, with a wide energy gap and peak intensities of UV-vis absorption with longer discharge times. A decrease in particle size from 29 to 25 nm was also observed with increasing discharge time, while all samples were thermally stable between 25 and 700 °C. The photocatalytic performance of the ZnO NPs was evaluated by degrading Congo Red (CR) dye with a concentration of 20 ppm under sunlight at a dose of 1 mg/mL. The as-synthesized ZnO NPs revealed exceptional photocatalytic performance by degrading ~ 97% of CR dye after irradiation for 150 min. This work presents an easy and simple method for synthesizing NPs in a short time and pave the way for other potential ideas on the application of plasma gliding arc discharge.
Collapse
Affiliation(s)
- Ridha Messai
- Faculty of Technology, Department of Process Engineering, University of El Oued, 39000, El Oued, Algeria
- Laboratory of Sciences and Techniques of the Environment and Valorization, University Abdelhamid Ben Badis of Mostaganem, BP 227, 27000, Mostaganem, Algeria
| | - Mohammed Fouad Ferhat
- Faculty of Technology, Department of Process Engineering, University of El Oued, 39000, El Oued, Algeria
- Laboratory of Sciences and Techniques of the Environment and Valorization, University Abdelhamid Ben Badis of Mostaganem, BP 227, 27000, Mostaganem, Algeria
- Faculty of Exact Sciences, Department of Chemistry, University of El Oued, 39000, El Oued, Algeria
| | - Abdelghani Serouti
- Faculty of Technology, Department of Process Engineering, University of El Oued, 39000, El Oued, Algeria
- Unit of Renewable Energy Development in Arid Zone (UDERZA), University of El Oued, 39000, El Oued, Algeria
| | - Bounedjar Nourelhouda
- Faculty of Exact Sciences, Department of Chemistry, University of El Oued, 39000, El Oued, Algeria
- Unit of Renewable Energy Development in Arid Zone (UDERZA), University of El Oued, 39000, El Oued, Algeria
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia.
| | - Nassiba Allag
- Department of Mechanical Engineering, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Abdelhalim Zoukel
- Laboratory Physico-Chemistry of Materials, Laghouat University, Laghouat, Algeria
- Center for Scientific and Technical Research in Physicochemical Analysis (PTAPC-Laghouat-CRAPC), Laghouat, Algeria
| | - Mouffok Redouane Ghezzar
- Laboratory of Sciences and Techniques of the Environment and Valorization, University Abdelhamid Ben Badis of Mostaganem, BP 227, 27000, Mostaganem, Algeria
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Mariappan A, Harikrishnan L, Eswaran J, Arumugham N, Balasubramaniam Y, Daniel S, Kanthapazham R. Green Synthesis of Metal-Doped ZnO Nanoparticles Using Bauhinia racemosa Lam. Extract and Evaluation of Their Photocatalysis and Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:2519-2532. [PMID: 38530961 DOI: 10.1021/acsabm.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A fascinating problem in the fields of nanoscience and nanobiotechnology has recently emerged, and to tackle this, the production of metal oxide nanoparticles using plant extracts offers numerous benefits over traditional physicochemical methods. In the present investigation, ZnO nanoparticles were fabricated from Bauhinia racemosa Lam. (BR) leaves extract with various transition metal (TM) dopants (Ni, Mn, and Co). Plant leaves extract containing metal nitrate solutions were utilized as a precursor to synthesize the pristine and TM-doped ZnO nanoparticles. Structural, functional, optical, and surface properties of the fabricated samples were studied by using physicochemical and photoelectrochemical measurements. The organic pollutants tetracycline (TC), ampicillin (AMP), and amoxicillin (AMX) were used in the photocatalytic degradation assessment of the fabricated samples. Through X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigation, the fabricated nanoparticles wurtzite crystal structure was verified. Moreover, Fourier transform infrared (FT-IR) analysis verified the existence of functional groups in the fabricated nanoparticles. The migration of electrons from the deep donor level and zinc interstitial to the Zn-defect and O-defect is related to the emission peaks seen at 468, 480, 534, and 450 nm in photoluminescence (PL) spectra. Co-ZnO nanoparticles demonstrated potent and excellent photocatalytic degradation performance for TC (91.09%), AMP (87.97%), and AMX (92.42%) antibiotics within 210, 180, and 150 min of visible light irradiation. Co-ZnO nanoparticles also demonstrated strong antimicrobial performance against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Aspergillus flavus, Aspergillus niger, and Bacillus subtilis. Further investigation of in vitro cytotoxic potential against the A549 cell line (IC50 = 24 ± 0.5 μg/mL) utilizing MTT assay and the free radical scavenging performance of Co-ZnO nanoparticles estimated by DPPH assay utilizing l-ascorbic acid as a reference was also performed. Anti-inflammatory potential is also reviewed by comparing it with the standard drug Diclofenac, and the maximum activity was obtained for Ni-ZnO nanoparticles (IC50 = 72.4 μg/mL).
Collapse
Affiliation(s)
- Anusuya Mariappan
- Department of Chemistry, Kongunadu Arts and Science College, Coimbatore, Tamilnadu 641029, India
- Post Graduate Department of Chemistry, Nallamuthu Gounder Mahalingam College, Pollachi, Tamil Nadu 642001, India
| | - Leelavathi Harikrishnan
- Centre for Computational Modeling, Chennai Institute of Technology, Chennai, Tamilnadu 600069, India
| | - Jayanthi Eswaran
- Department of Chemistry, Kongunadu Arts and Science College, Coimbatore, Tamilnadu 641029, India
| | - Nagaveni Arumugham
- Department of Chemistry, Kongunadu Arts and Science College, Coimbatore, Tamilnadu 641029, India
- Department of Science and Humanities, JCT College of Engineering and Technology, Pichanur, Coimbatore, Tamil Nadu 641105, India
| | | | - Santhanaraj Daniel
- Department of Chemistry, Loyola College, Chennai, Tamilnadu 600034, India
| | - Rajakumar Kanthapazham
- Nanotechnology Research and Education Centre, South Ural State University, Chelyabinsk 454080, Russia
| |
Collapse
|
7
|
Chaves NO, Lima LS, Monteiro MDS, Sobrinho RAL, Ferreira NS, Ramos GQ, da Fonseca Filho HD, Oliveira RMPB, Matos RS. Associating Physical and Photocatalytic Properties of Recyclable and Reusable Blast Furnace Dust Waste. MATERIALS (BASEL, SWITZERLAND) 2024; 17:818. [PMID: 38399069 PMCID: PMC10889973 DOI: 10.3390/ma17040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Blast furnace dust waste (BFDW) proved efficient as a photocatalyst for the decolorization of methylene blue (MB) dye in water. Structural analysis unequivocally identified α-Fe2O3 as the predominant phase, constituting approximately 92%, with a porous surface showcasing unique 10-30 nm agglomerated nanoparticles. Chemical and thermal analyses indicated surface-bound water and carbonate molecules, with the main phase's thermal stability up to 900 °C. Electrical conductivity analysis revealed charge transfer resistance values of 616.4 Ω and electrode resistance of 47.8 Ω. The Mott-Schottky analysis identified α-Fe2O3 as an n-type semiconductor with a flat band potential of 0.181 V vs. Ag/AgCl and a donor density of 1.45 × 1015 cm-3. The 2.2 eV optical bandgap and luminescence stem from α-Fe2O3 and weak ferromagnetism arises from structural defects and surface effects. With a 74% photocatalytic efficiency, stable through three photodegradation cycles, BFDW outperforms comparable waste materials in MB degradation mediated by visible light. The elemental trapping experiment exposed hydroxyl radicals (OH•) and superoxide anions (O2-•) as the primary species in the photodegradation process. Consequently, iron oxide-based BFDW emerges as an environmentally friendly alternative for wastewater treatment, underscoring the pivotal role of its unique physical properties in the photocatalytic process.
Collapse
Affiliation(s)
- Nayane O. Chaves
- Postgraduate Program in Materials Science and Engineering (P2CEM), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil; (N.O.C.); (R.M.P.B.O.)
| | - Lucas S. Lima
- Laboratory of Corrosion and Nanotechnology (LCNT), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil; (L.S.L.); (M.D.S.M.)
| | - Michael D. S. Monteiro
- Laboratory of Corrosion and Nanotechnology (LCNT), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil; (L.S.L.); (M.D.S.M.)
| | - Raimundo A. L. Sobrinho
- Department of Chemical Engineering, State University of Santa Cruz, Rod. Jorge Amado, Km 16—Salobrinho, Ilhéus 45662-900, BA, Brazil;
| | - Nilson S. Ferreira
- Department of Physics, Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil;
| | - Glenda Q. Ramos
- Centro Multiusuário para Análise de Fenômenos Biomédicos, Universidade do Estado do Amazonas, Manaus 69410-000, AM, Brazil;
| | - Henrique D. da Fonseca Filho
- Laboratory of Synthesis of Nanomaterials and Nanoscopy (LSNN), Physics Department, Federal University of Amazonas-UFAM, Manaus 69077-000, AM, Brazil;
| | - Rosane M. P. B. Oliveira
- Postgraduate Program in Materials Science and Engineering (P2CEM), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil; (N.O.C.); (R.M.P.B.O.)
| | - Robert S. Matos
- Amazonian Materials Group, Federal University of Amapá (UNIFAP), Macapá 68911-477, AP, Brazil
| |
Collapse
|
8
|
Mohite SV, Kim S, Bae J, J Jeong H, Kim TW, Choi J, Kim Y. Defects Healing of the ZnO Surface by Filling with Au Atom Catalysts for Efficient Photocatalytic H 2 Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304393. [PMID: 37712098 DOI: 10.1002/smll.202304393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Healed defects on photocatalysts surface and their interaction with plasmonic nanoparticles (NPs) have attracted attention in H2 production process. In this study, surface oxygen vacancy (Vo ) defects are created on ZnO (Vo -ZnO) NPs by directly pyrolyzing zeolitic imidazolate framework. The surface defects on Vo -ZnO provide active sites for the diffusion of single Au atoms and as nucleation sites for the formation of Au NPs by the in situ photodeposition process. The electronically healed surface defects by single Au atoms help in the formation of a heterojunction between the ZnO and plasmonic Au NPs. The formed Au/Vo -Au:ZnO-4 heterojunction prolongs photoelectron lifetimes and increases donor charge density. Therefore, the optimized photocatalysts of Au/Vo -Au:ZnO-4 has 21.28 times higher H2 production rate than the pristine Vo -ZnO under UV-visible light in 0.35 m Na2 SO4 and 0.25 m Na2 SO3 . However in 0.35 m Na2 S and 0.25 m Na2 SO3 , the H2 production rate is 25.84 mmole h-1 g-1 . Furthermore, Au/Vo -Au:ZnO-4 shows visible light activity by generating hot carries via induced surface plasmonic effects. It has 48.58 times higher H2 production rate than pristine Vo -ZnO. Therefore, this study infers new insight for defect healing mediated preparation of Au/Vo -Au:ZnO heterojunction for efficient photocatalytic H2 production.
Collapse
Affiliation(s)
- Santosh V Mohite
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
| | - Shinik Kim
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jiyoung Bae
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
| | - Hee J Jeong
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
| | - Tae Woong Kim
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
| | - Jihoon Choi
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Yeonho Kim
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
| |
Collapse
|
9
|
Wary RR, Narzary M, Brahma BB, Brahma D, Kalita P, Buzar Baruah M. Nanostructural Design of ZnO Using an Agro-Waste Extract for a Sustainable Process and Its Photocatalytic Activity. ACS APPLIED BIO MATERIALS 2023; 6:4645-4661. [PMID: 37938913 DOI: 10.1021/acsabm.3c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The use of agro-waste extracts (AWEs) as a sustainable medium for developing cost-effective and ecologically friendly nanomaterials has piqued the interest of current researchers. Herein, waste extracts from papaya barks, banana peels, thumba plants, and snail shells were used for synthesizing ZnO nanostructures via a hydrothermal method, followed by calcination at 400 °C. The crystallinity and pure wurtzite phase formation of ZnO nanostructures were confirmed via X-ray diffraction. ZnO nanostructures with various morphologies such as tight sheet-like, spherical, porous sheet-like, and bracket-shaped, comprising small interconnected particles with a highly catalytically active exposed (0001) facet, were observed via field emission scanning electron microscopy and transmission electron microscopy. The formation mechanism of the various morphologies of the ZnO nanostructures was proposed. Ultraviolet-visible spectra showed different absorption band edges of ZnO nanostructures with a bandgap in the range of 3.17-3.27 eV. Photoluminescence studies showed the presence of various defect states such as oxygen and zinc vacancies and oxygen and zinc interstitials on ZnO nanostructures, which are usually observed in traditionally prepared ZnO. The photocatalytic activity of ZnO nanostructures was evaluated under direct sunlight using rhodamine B (RhB) and Congo red (CR) dyes as probe pollutants. Furthermore, prepared ZnO nanostructures could potentially adsorb anionic dyes (e.g., CR) in the absence of light. Superoxide and hydroxide radicals played a vital role in the photocatalytic activity of ZnO. The photocatalyst could be reused for up to three cycles, indicating its stability. Therefore, this study reports the diverse use of AWEs as cost-effective media for nanomaterial synthesis.
Collapse
Affiliation(s)
- Riu Riu Wary
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Mousumi Narzary
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Bidhu Bhusan Brahma
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Dulu Brahma
- Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Pranjal Kalita
- Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Manasi Buzar Baruah
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| |
Collapse
|
10
|
Orudzhev F, Muslimov A, Selimov D, Gulakhmedov RR, Lavrikov A, Kanevsky V, Gasimov R, Krasnova V, Sobola D. Oxygen Vacancies and Surface Wettability: Key Factors in Activating and Enhancing the Solar Photocatalytic Activity of ZnO Tetrapods. Int J Mol Sci 2023; 24:16338. [PMID: 38003527 PMCID: PMC10671779 DOI: 10.3390/ijms242216338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
This paper reports on the high photocatalytic activity of ZnO tetrapods (ZnO-Ts) using visible/solar light and hydrodynamic water flow. It was shown that surface oxygen defects are a key factor in the photocatalytic activity of the ZnO-Ts. The ability to control the surface wettability of the ZnO-Ts and the associated concentration of surface defects was demonstrated. It was demonstrated that the photocatalytic activity during the MB decomposition process under direct and simulated sunlight is essentially identical. This presents excellent prospects for utilizing the material in solar photocatalysis.
Collapse
Affiliation(s)
- Farid Orudzhev
- Smart Materials Laboratory, Dagestan State University, 367000 Makhachkala, Russia; (D.S.); (R.R.G.)
| | - Arsen Muslimov
- Federal Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (A.M.); (A.L.); (V.K.); (V.K.)
| | - Daud Selimov
- Smart Materials Laboratory, Dagestan State University, 367000 Makhachkala, Russia; (D.S.); (R.R.G.)
| | - Rashid R. Gulakhmedov
- Smart Materials Laboratory, Dagestan State University, 367000 Makhachkala, Russia; (D.S.); (R.R.G.)
| | - Alexander Lavrikov
- Federal Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (A.M.); (A.L.); (V.K.); (V.K.)
| | - Vladimir Kanevsky
- Federal Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (A.M.); (A.L.); (V.K.); (V.K.)
| | - Rashid Gasimov
- Institute of Radiation Problems of Azerbaijan National Academy of Sciences, AZ1143 Baku, Azerbaijan
| | - Valeriya Krasnova
- Federal Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (A.M.); (A.L.); (V.K.); (V.K.)
| | - Dinara Sobola
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 61600 Brno, Czech Republic
| |
Collapse
|
11
|
Wang W, Lv L, Wang C, Li J. Melamine-Assisted Thermal Activation Method for Vacancy-Rich ZnO: Calcination Effects on Microstructure and Photocatalytic Properties. Molecules 2023; 28:5329. [PMID: 37513204 PMCID: PMC10385723 DOI: 10.3390/molecules28145329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Defect engineering is considered an effective method to adjust the photocatalytic properties of materials. In this work, we synthesized the vacancy-rich ZnO rods with (100) planes via the melamine-assisted thermal activation method. A high concentration of oxygen vacancies was successfully introduced into non-polar oriented ZnO rods by calcination. The effect of oxygen vacancy on the photocatalytic properties of non-polar-oriented ZnO rods was investigated. Raman and XPS spectra revealed the formation of oxygen vacancies in the ZnO. The results showed that the growth habit and defects in ZnO can be controlled by changing the ratio of ZnO to melamine. The higher ratio of ZnO to melamine led to more amounts of (100) planes and oxygen vacancies in ZnO, and it reached the highest when the ratio was 1.2:1. When the ratio was 1.2:1, ZnO exhibited a high methyl orange degradation rate (95.8%). The differences in oxygen vacancy concentration and non-polar planes were responsible for the improvement in photocatalytic performance. ZnO exhibited good stability and regeneration capacity. After recycling four times, the degradation rate was still at 92%. Using the same method, vacancy-rich α-Fe2O3 was obtained. This work could offer a new and simple strategy for designing a photocatalyst with oxygen vacancies.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China
| | - Lin Lv
- Shandong LinJia New Material Technology Co., Ltd., Zibo 255049, China
| | - Changfeng Wang
- Shandong LinJia New Material Technology Co., Ltd., Zibo 255049, China
| | - Jiao Li
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
12
|
Tuc Altaf C, Colak TO, Rostas AM, Popa A, Toloman D, Suciu M, Demirci Sankir N, Sankir M. Impact on the Photocatalytic Dye Degradation of Morphology and Annealing-Induced Defects in Zinc Oxide Nanostructures. ACS OMEGA 2023; 8:14952-14964. [PMID: 37151495 PMCID: PMC10157689 DOI: 10.1021/acsomega.2c07412] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
In this study, three different morphologies, nanoflower (NF), nano sponge (NS), and nano urchin (NU), of zinc oxide (ZnO) nanostructures were synthesized successfully via a mild hydrothermal method. After synthesis, the samples were annealed in the atmosphere at 300, 600, and 800 °C. Although annealing provides different degradation kinetics for different morphologies, ZnO NS performed significantly better than other morphologies for all annealing temperatures we used in the study. When the photoluminescence, electron paramagnetic resonance spectroscopy, BET surface, and X-ray diffraction analysis results are examined, it is revealed that the defect structure, pore diameter, and crystallinity cumulatively affect the photocatalytic activity of ZnO nanocatalysts. As a result, to obtain high photocatalytic activity in rhodamine B (RhB) degradation, it is necessary to develop a ZnO catalyst with fewer core defects, more oxygen vacancies, near band emission, large crystallite size, and large pore diameter. The ZnO NS-800 °C nanocatalyst studied here had a 35.6 × 10-3 min-1 rate constant and excellent stability after a 5-cycle photocatalytic degradation of RhB.
Collapse
Affiliation(s)
- Cigdem Tuc Altaf
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Tuluhan Olcayto Colak
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Arpad Mihai Rostas
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
- E-mail:
| | - Adriana Popa
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Dana Toloman
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Maria Suciu
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Nurdan Demirci Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- E-mail:
| | - Mehmet Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- E-mail:
| |
Collapse
|
13
|
Thongam DD, Chaturvedi H. Heterostructure charge transfer dynamics on self-assembled ZnO on electronically different single-walled carbon nanotubes. CHEMOSPHERE 2023; 323:138239. [PMID: 36841447 DOI: 10.1016/j.chemosphere.2023.138239] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The charge transfer kinetics of the catalyst particles play a key role in advanced oxidation processes (AOP) for the complete destruction of recalcitrant and persistent contaminants in water. Here, a significant improvement in the photocatalytic performance is observed in the Single-Walled Carbon Nanotube (SWCNT)-ZnO heterostructure photocatalyst. The charge transfer dynamics and factors affecting AOP are studied using ZnO nanoparticles self-assembled onto three electronically different SWCNTs (metallic, semiconducting, and pristine) via the precipitation method, introducing a heterojunction interface. The creation of the SWCNT/ZnO heterostructure interface improves charge transfer and separation, resulting in a charge carrier lifetime of 7.37 ns. Also, surface area, pore size, and pore volumes are increased by 4.2 times compared to those of ZnO. The nanoparticles-coated face-mask fabric used as the floating photocatalyst exhibited high stability and recyclability with 99% RhB degradation efficiency under natural sunlight and 94% under UV light after the 5th cycle. The surface and crystal defects-oxygen or zinc defects/interstitials open new reaction active sites that assist in charge carrier transfer and act as pollutant absorption and interaction sites for enhanced performance. The ideal band edge positions of the valence band and conduction band favor the generation of H2O/OH•, OH·/OH, and O2/HO2• reactive oxygen species. OH• radicals are found to play a vital role in this AOP by using ethanol as an OH• scavenger.
Collapse
Affiliation(s)
- Debika Devi Thongam
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Harsh Chaturvedi
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
14
|
Abbasi S, Naimi-Jamal MR, Javanshir S, Heydari A. Photocatalytic aerobic oxidative functionalization (PAOF) reaction of benzyl alcohols by GO-MIL-100(Fe) composite in glycerol/K 2CO 3 deep eutectic solvent. Sci Rep 2022; 12:18214. [PMID: 36309549 PMCID: PMC9617864 DOI: 10.1038/s41598-022-22369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
An MIL-100 (Fe)/graphene oxide (GO) hybrid, a fairly-known composite, was made through a simple one-step procedure and played a highlighted role in the photo-induced oxidative functionalization of the benzylic C–H bond. To identify the given binary composite, various techniques were applied: FT-IR, P-XRD, SEM, nitrogen absorption–desorption analysis, TGA, TEM, and UV–Visible DRS spectra. Proportions of GO used within the structure of the prepared composite differently ranged from low to high amount, and the most optimized ratio met at 38.5% of GO as the most efficient catalyst. Additionally, the reaction ran in Glycerol/K2CO3 (2:1) as the optimal solvent. The elemental roles of O2·− and OH− were supposed to be the major ones for running a tandem oxidation-Knoevenagel reaction. The heterogeneity and reusability of the catalyst were also examined and confirmed after five successive runs.
Collapse
Affiliation(s)
- Sepideh Abbasi
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran.
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Akbar Heydari
- Chemistry Department, Tarbiat Modares University, Tehran, 14155-4838, Iran
| |
Collapse
|
15
|
Doustkhah E, Esmat M, Fukata N, Ide Y, Hanaor DAH, Assadi MHN. MOF-derived nanocrystalline ZnO with controlled orientation and photocatalytic activity. CHEMOSPHERE 2022; 303:134932. [PMID: 35568217 DOI: 10.1016/j.chemosphere.2022.134932] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 05/07/2022] [Indexed: 05/27/2023]
Abstract
We show here that MOF-5, a sample Zn-based MOF, can uniquely transform into distinct zinc oxide nanostructures. Inspired by the interconversion synthesis of zeolites, we converted MOF-5 into nanocrystalline ZnO. We found the conversion of MOF-5 into ZnO to be tunable and straightforward simply by controlling the treatment temperature and choosing an appropriate structure-directing agent (SDA). Refined X-ray diffraction (XRD) patterns showed that a synthesis temperature of 180 °C (sample ZnO-180) was optimal for achieving high crystallinity. We examined ZnO-180 with high-resolution transmission electron microscopy (HRTEM), which confirmed that the samples were made of individual crystallites grown along the c-axis, or the (001) direction, thus exposing lower energy surfaces and corroborating the XRD pattern and the molecular dynamics calculations. Further investigations revealed that the obtained ZnO at 180 °C has a superior photocatalytic activity in degrading methylene blue to other ZnO nanostructures obtained at lower temperatures.
Collapse
Affiliation(s)
- Esmail Doustkhah
- Koç University Tüpraş Energy Center (KUTEM), Department of Chemistry, Koç University, 34450, Istanbul, Turkey; International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Ibaraki, Japan.
| | - Mohamed Esmat
- International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Ibaraki, Japan; Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University (BSU), Beni-Suef, 62511, Egypt
| | - Naoki Fukata
- International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Ibaraki, Japan
| | - Yusuke Ide
- International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Ibaraki, Japan
| | - Dorian A H Hanaor
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Material Science and Technology, Chair of Advanced Ceramic Materials, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - M Hussein N Assadi
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
16
|
Matos RS, Attah-Baah JM, Monteiro MDS, Costa BFO, Mâcedo MA, Da Paz SPA, Angélica RS, de Souza TM, Ţălu Ş, Oliveira RMPB, Ferreira NS. Evaluation of the Photocatalytic Activity of Distinctive-Shaped ZnO Nanocrystals Synthesized Using Latex of Different Plants Native to the Amazon Rainforest. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2889. [PMID: 36014752 PMCID: PMC9416145 DOI: 10.3390/nano12162889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
ZnO nanocrystals with three different morphologies have been synthesized via a simple sol-gel-based method using Brosimum parinarioides (bitter Amapá) and Parahancornia amapa (sweet Amapá) latex as chelating agents. X-ray diffraction (XRD) and electron diffraction patterns (SAED) patterns showed the ZnO nanocrystals were a pure hexagonal wurtzite phase of ZnO. XRD-based spherical harmonics predictions and HRTEM images depicted that the nanocrystallites constitute pitanga-like (~15.8 nm), teetotum-like (~16.8 nm), and cambuci-like (~22.2 nm) shapes for the samples synthesized using bitter Amapá, sweet Amapá, and bitter/sweet Amapá chelating agent, respectively. The band gap luminescence was observed at ~2.67-2.79 eV along with several structural defect-related, blue emissions at 468-474 nm (VO, VZn, Zni), green emissions positioned at 513.89-515.89 (h-VO+), and orange emission at 600.78 nm (VO+-VO++). The best MB dye removal efficiency (85%) was mainly ascribed to the unique shape and oxygen vacancy defects found in the teetotum-like ZnO nanocrystals. Thus, the bitter Amapá and sweet Amapá latex are effective chelating agents for synthesizing distinctive-shaped ZnO nanocrystals with highly defective and remarkable photocatalytic activity.
Collapse
Affiliation(s)
- Robert S. Matos
- Postgraduate Program in Materials Science and Engineering (P2CEM), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil
- Amazonian Materials Group, Federal University of Amapá (UNIFAP), Macapá 68911-477, AP, Brazil
| | - John M. Attah-Baah
- Laboratory of Corrosion and Nanotechnology (LCNT), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil
| | - Michael D. S. Monteiro
- Laboratory of Corrosion and Nanotechnology (LCNT), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil
| | - Benilde F. O. Costa
- University of Coimbra, CFisUC, Department of Physics, P-3004-516 Coimbra, Portugal
| | - Marcelo A. Mâcedo
- Laboratory of Corrosion and Nanotechnology (LCNT), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil
| | - Simone P. A. Da Paz
- Institute of Geosciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Rômulo S. Angélica
- Institute of Geosciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Tiago M. de Souza
- Núcleo de Engenharia de Materiais Sustentáveis (NEMaS), Universidade do Estado do Amapá, Macapá 68900-070, AP, Brazil
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, 15 Constantin Daicoviciu St., 400020 Cluj-Napoca, Romania
| | - Rosane M. P. B. Oliveira
- Postgraduate Program in Materials Science and Engineering (P2CEM), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil
| | - Nilson S. Ferreira
- Laboratory of Corrosion and Nanotechnology (LCNT), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil
| |
Collapse
|
17
|
Oxygen Vacancy-Dependent Chemiluminescence: A Facile Approach for Quantifying Oxygen Defects in ZnO. Anal Chem 2022; 94:8642-8650. [PMID: 35679593 DOI: 10.1021/acs.analchem.2c00359] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Defect engineering is an effective strategy to improve the catalytic activity of metal oxides, and quantitative characterization of surface defects is thus vital to the understanding and application of metal oxide catalysts. Herein, we found that ZnO nanoparticles with oxygen vacancy could trigger the luminol-H2O2 system to emit a strong chemiluminescence (CL), and the CL intensity was strongly dependent on the oxygen vacancy of the ZnO nanoparticles. The mechanism of this CL reaction was discussed by means of the electron-spin resonance spectrum, X-ray photoelectron spectrum (XPS), and CL spectrum. The oxygen vacancy-dependent CL was attributed to the ability of the oxygen vacancy to readily adsorb and further dissociate H2O2 into active •OH radicals. Taking advantage of this oxygen vacancy-dependent CL, we presented one method for quantifying the oxygen defects in ZnO. Compared with the current evaluation techniques (XPS and Raman spectroscopy), this CL method is rapid, low-cost, and easy to operate. This work introduces the CL technique into the field of material structure-property evaluation, and provides a new approach for exploring the defect function in ZnO defect engineering.
Collapse
|
18
|
Feng Q, Ren Y, Sun Z, Liu J, Zhou Y, Tang D. Porous ZnO Microspheres Grafted with Poly‐(
N
‐isopropylacrylamide) via SI‐ATRP: Reversible Temperature‐Controlled Switching of Photocatalysis**. ChemistrySelect 2022. [DOI: 10.1002/slct.202103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qian Feng
- State Key Laboratory of Advanced Welding and Joining Harbin Institute of Technology Harbin 150001 China
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Yonghui Ren
- Jiangxi Brother Pharmaceutical Co. Ltd Jiujiang 332700 China
| | - Zhaojie Sun
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Jia Liu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Yuze Zhou
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Dongyan Tang
- State Key Laboratory of Advanced Welding and Joining Harbin Institute of Technology Harbin 150001 China
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
19
|
Evaluation of the Structure–Micromorphology Relationship of Co10%–Alx Co-doped Zinc Oxide Nanostructured Thin Films Deposited by Pulsed Laser Using XRD and AFM. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06568-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Fractal-Stereometric Correlation of Nanoscale Spatial Patterns of GdMnO3 Thin Films Deposited by Spin Coating. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiferroic systems are of great interest for technological applications. To improve the fabrication of thin films, stereometric and fractal analysis of surface morphology have been extensively performed to understand the influence of physical parameters on the quality of spatial patterns. In this work, GaMnO3 was synthesized and thin films were deposited on Pt(111)/TiO2/SiO2/Si substrates using a spin coating apparatus to study the correlation between their stereometric and fractal parameters. All films were studied by X-ray diffraction (XRD), where the structure and microstructure of the film sintered at 850 °C was investigated by Rietveld refinement. Topographic maps of the films were obtained using an atomic force microscope (AFM) in tapping mode. The results show that the film sintered at 850 °C exhibited a clear formation of a GdMnO3 orthorhombic structure with crystallite size of ~14 nm and a microstrain higher than other values reported in the literature. Its surface morphology presented a rougher topography, which was confirmed by the height parameters. Topographic differences due to different asymmetries and shapes of the height distributions between the films were observed. Specific stereometric parameters also showed differences in the morphology and microtexture of the films. Qualitative rendering obtained by commercial image processing software revealed substantial differences between the microtextures of the films. Fractal and advanced fractal parameters showed that the film sintered at 850 °C had greater spatial complexity, which was due to their higher topographic roughness, lower surface percolation and greater topographic uniformity, being dominated by low dominant special frequencies. Our combination of stereometric and fractal measurements can be useful to improve the fabrication process by optimizing spatial patterns as a function of the sintering temperature of the film.
Collapse
|