1
|
Li M, Zhao R, Dang J, Zhao X. Theoretical study on the stabilities, electronic structures, and reaction and formation mechanisms of fullerenes and endohedral metallofullerenes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
2
|
He J, Li M, Zhang W, Zhao X. Stabilities, Geometries, Electronic Structures, and Conversion Rules of Carbide Cluster Metallofullerenes. CHEM REC 2022; 22:e202200148. [PMID: 35914902 DOI: 10.1002/tcr.202200148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Indexed: 11/06/2022]
Abstract
Since the discovery of the first carbide cluster metallofullerene (CCMF) Sc2 C2 @C84 in 2001, CCMFs have attracted great concerns with variable structures and fascinating characteristics. To date, there are hundreds of studies on CCMFs. Crystallography studies on CCMFs are carried out by single-crystal X-ray diffraction. Theoretical calculations can also be used to study CCMFs in detail without being limited by low experimental yields. This review analyzes the stability of CCMFs reported previously, and indicates that the C2 unit contributes a lot to their stability. At the same time, the relationship between the structures of inner carbide cluster and cage size is systematically discussed, and the four-electron transfer always occurs. Furthermore, the possible transformation rule between di-EMFs and CCMFs is indicated. Finally, an outlook regarding the future developments and applications of CCMFs is presented.
Collapse
Affiliation(s)
- Jun He
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mengyang Li
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China.,School of Physics, Xidian University, Xi'an, 710071, China
| | - Wenxin Zhang
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiang Zhao
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
3
|
Bao L, Yu P, Li MY, Shen W, Hu S, Yu P, Tian X, Zhao X, Lu X. An unprecedented C80 cage that violates the isolated pentagon rule. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00410k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two Lu2O@C80 isomers have been successfully isolated and unambiguously assigned as Lu2O@C1(31876)-C80 and Lu2O@C2v(5)-C80, respectively, by X-ray crystallography. Interestingly, C1(31876)-C80 is an unprecedented cage with a pair of adjacent pentagons,...
Collapse
|
4
|
Sa B, Yang Z, Zhang Y, Si Y, Li H, Zhu C, Wen C, Wu B, Yu T. Computational mining of endohedral C 70 electrides: tri-metal alkali and alkaline-earth encapsulation. Dalton Trans 2022; 51:16836-16844. [DOI: 10.1039/d2dt02919g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the atoms in molecules analysis, electron localization functions, and nonlinear optical property analysis, M3@C70 (M = Li, Be, Mg, Ca) fullerenes are identified as electrides.
Collapse
Affiliation(s)
- Baisheng Sa
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhanlin Yang
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ying Zhang
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yitao Si
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an 710065, P. R. China
| | - Hengyi Li
- Fujian Applied Technology Engineering Center of Power Battery Materials, Fujian College of Water Conservancy and Electric Power, Yongan, Fujian 366000, P. R. China
| | - Changfeng Zhu
- Xiamen Funano New Materials Technology Co., Ltd, Xiamen 361006, P. R. China
| | - Cuilian Wen
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Bo Wu
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Tao Yu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an 710065, P. R. China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|