1
|
Han J, Fujikawa S, Kimizuka N. Living Hybrid Exciton Materials: Enhanced Fluorescence and Chiroptical Properties in Living Supramolecular Polymers with Strong Frenkel/Charge-Transfer Exciton Coupling. Angew Chem Int Ed Engl 2024:e202410431. [PMID: 38987230 DOI: 10.1002/anie.202410431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
A family of chiral perylene diimides (PDIs) was newly developed as excellent circularly polarized luminescence (CPL) materials. They are asymmetrically derivatized with a double-alkyl-chained L- or D-glutamate unit and a linear or branched alkyl chain. When water is added to the tetrahydrofuran (THF) solution of glutamate-PDI-linear-alkyl chain compounds, kinetically formed H-aggregates are formed in globular nanoparticles (NPs). These NPs undergo spontaneous transformation into thermodynamically stable nanotubes via helical nanostructures, which showed structured broad spectra originating from the strong coupling of delocalized Frenkel excitations (FE) and charge transfer excitations (CTE). Significant enhancement of circular dichroism (CD), fluorescence quantum yield, and circularly polarized luminescence (CPL) with luminescence dissymmetry factor (glum) are observed during the transformation of NPs to the FE/CTE-coupled helical and tubular structures. This transformation process is significantly accelerated by applying physical stimuli, i.e., ultrasonication or adding helical aggregates as seed crystals, a feature unique to living supramolecular polymerization. Meanwhile, the branched chain-containing PDIs only form H-aggregates and did not show FE/CTE hybrid exciton states with living supramolecular polymerization properties. This study unveils that suitably designed chiral PDI derivatives show FE/CTE coupling accompanied by high fluorescence quantum yields, enhanced chiroptical properties, and supramolecular living polymerization characteristics.
Collapse
Affiliation(s)
- Jianlei Han
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigenori Fujikawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
2
|
Gong ZL, Dan TX, Chen JC, Li ZQ, Yao J, Zhong YW. Boost the Circularly Polarized Phosphorescence of Chiral Organometallic Platinum Complexes by Hierarchical Assembly into Fibrillar Networks. Angew Chem Int Ed Engl 2024; 63:e202402882. [PMID: 38594208 DOI: 10.1002/anie.202402882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Circularly polarized luminescence (CPL)-active molecular materials have drawn increasing attention due to their promising applications for next-generation display and optoelectronic technologies. Currently, it is challenging to obtain CPL materials with both large luminescence dissymmetry factor (glum) and high quantum yield (Φ). A pair of enantiomeric N N C-type Pt(II) complexes (L/D)-1 modified with chiral Leucine methyl ester are presented herein. Though the solutions of these complexes are CPL-inactive, the spin-coated thin films of (L/D)-1 exhibit giantly-amplified circularly polarized phosphorescences with |glum| of 0.53 at 560 nm and Φair of ~50 %, as well as appealing circular dichroism (CD) signals with the maximum absorption dissymmetry factor |gabs| of 0.37-0.43 at 480 nm. This superior CPL performance benefits from the hierarchical formation of crystalline fibrillar networks upon spin coating. Comparative studies of another pair of chiral Pt(II) complexes (L/D)-2 with a symmetric N C N coordination mode suggest that the asymmetric N N C coordination of (L/D)-1 are favorable for the efficient exciton delocalization to amplify the CPL performance. Optical applications of the thin films of (L/D)-1 in CPL-contrast imaging and inducing CP light generation from achiral emitters and common light-emitting diode lamps have been successfully realized.
Collapse
Affiliation(s)
- Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ti-Xiong Dan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian-Cheng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhong-Qiu Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
3
|
Ueno K, Konishi Y, Cui L, Harada T, Ishibashi K, Konta T, Muranaka A, Hisaeda Y, Hoshino Y, Ono T. Unraveling the Remarkable Influence of Substituents on the Emission Variation and Circularly Polarized Luminescence of Dinuclear Aluminum Triple-Stranded Helicates. Inorg Chem 2024; 63:6296-6304. [PMID: 38526299 DOI: 10.1021/acs.inorgchem.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
This study explored the development of functional dyes using aluminum, focusing on aluminum-based dinuclear triple-stranded helicates, and examined the effects of substituent variations on their structural and optical properties. Key findings revealed that the modification of methyl groups to the pyrrole positions significantly extended the conjugation system, resulting in a red shift in the absorption and emission spectra. Conversely, the modification of methyl groups at the methine positions due to steric hindrances increased the torsion angle of the ligands, leading to a blue shift in the absorption and emission spectra. A common feature across all complexes was that in the excited state, one of the three ligands underwent significant structural relaxation. This led to a pronounced Stokes shift and minimal spectra overlap with high photoluminescence behaviors. Moreover, our research extended to the optical resolution of the newly synthesized complexes by analyzing the chiroptical properties of the resulting enantiomers, including their circular dichroism and circularly polarized luminescence. These insights offer valuable contributions to the design and application of novel aluminum-based functional dyes, potentially influencing a range of fields, from materials science to optoelectronics.
Collapse
Affiliation(s)
- Kodai Ueno
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuto Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Luxia Cui
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takunori Harada
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Kohei Ishibashi
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Takeru Konta
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Atsuya Muranaka
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yoshio Hisaeda
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Toshikazu Ono
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Kitzmann WR, Freudenthal J, Reponen APM, VanOrman ZA, Feldmann S. Fundamentals, Advances, and Artifacts in Circularly Polarized Luminescence (CPL) Spectroscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302279. [PMID: 37658497 DOI: 10.1002/adma.202302279] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/06/2023] [Indexed: 09/03/2023]
Abstract
Objects are chiral when they cannot be superimposed with their mirror image. Materials can emit chiral light with an excess of right- or left-handed circular polarization. This circularly polarized luminescence (CPL) is key to promising future applications, such as highly efficient displays, holography, sensing, enantiospecific discrimination, synthesis of drugs, quantum computing, and cryptography. Here, a practical guide to CPL spectroscopy is provided. First, the fundamentals of the technique are laid out and a detailed account of recent experimental advances to achieve highly sensitive and accurate measurements is given, including all corrections required to obtain reliable results. Then the most common artifacts and pitfalls are discussed, especially for the study of thin films, for example, based on molecules, polymers, or halide perovskites, as opposed to dilute solutions of emitters. To facilitate the adoption by others, custom operating software is made publicly available, equipping the reader with the tools needed for successful and accurate CPL determination.
Collapse
Affiliation(s)
- Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55122, Mainz, Germany
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA
| | - John Freudenthal
- Hinds Instruments Inc., 7245 NE Evergreen Parkway, Hillsboro, OR, 97124, USA
| | - Antti-Pekka M Reponen
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA
| | - Zachary A VanOrman
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA
| | - Sascha Feldmann
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA
| |
Collapse
|
5
|
Park G, Jeong DY, Yu SY, Park JJ, Kim JH, Yang H, You Y. Enhancing Circularly Polarized Phosphorescence via Integrated Top-Down and Bottom-Up Approach. Angew Chem Int Ed Engl 2023; 62:e202309762. [PMID: 37606233 DOI: 10.1002/anie.202309762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
In the dynamic domain of chiroptical technologies, it is imperative to engineer emitters endowed with circularly polarized luminescence (CPL) properties. This research demonstrates an advancement by employing a combined top-down and bottom-up strategy for the simultaneous amplification of photoluminescence quantum yield (Φ) and the luminescence dissymmetry factor (glum ). Square-planar Pt(II) complexes form helical assemblies, driven by torsional strain induced by bis(nonyl) chains. Integration of chiral anions leads these assemblies to prefer distinct helical sense. This arrangement activates the metal-metal-to-ligand charge transfer (MMLCT) transition that is CPL-active, with Φ and |glum | observing an upswing contingent on the charge number and aryl substituents in chiral anions. Utilizing the soft-lithographic micromolding in capillaries technique, we could fabricate exquisitely-ordered, one-dimensional co-assemblies to achieve the metrics to Φ of 0.32 and |glum | of 0.13. Finally, our spectroscopic research elucidates the underlying mechanism for the dual amplification, making a significant stride in the advancement of CPL-active emitters.
Collapse
Affiliation(s)
- Gyurim Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dong Yeon Jeong
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seung Yeon Yu
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jong Jin Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jong H Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Hoichang Yang
- Department of Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Youngmin You
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
6
|
Berijani K, Chang LM, Gu ZG. Chiral templated synthesis of homochiral metal-organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Zhang HH, Jing J, Xu G, Song YX, Wu SX, Chen XH, Zhang DS, Zhang XP, Shi ZF. Circularly polarized luminescence of pinene-modified tetradentate platinum(II) enantiomers containing fused 5/6/6 metallocycles. Heliyon 2022; 8:e11358. [PMID: 36387510 PMCID: PMC9649974 DOI: 10.1016/j.heliyon.2022.e11358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, a couple of tetradentate Pt(II) enantiomers ((−)-1 and (+)-1) and a couple of tetradentate Pt(IV) enantiomers ((−)-2 and (+)-2) containing fused 5/6/6 metallocycles have been synthesized by controlling reaction conditions. Two valence forms could transform into each other through mild chemical oxidants and reductants. Single-crystal X-ray diffraction confirms the structures of (−)-1 and (−)-2. The coordination sphere of the Pt(II) cation in (−)-1 displays a distorted square-planar geometry and a platinum centroid helix chirality. In contrast, the structure of (−)-2 reveals a distorted octahedral geometry. The solution and the solid of (−)-1 are highly luminescent. Complex (−)-1 shows a prominent aggregation-induced emission enhancement (AIEE) behavior in DMSO/water solution with emission quantum yield (Φem) up to 73.2%. Furthermore, highly phosphorescent Pt(II) enantiomers exhibit significant circularly polarized luminescence (CPL) with a dissymmetry factor (glum) of order 10−3 in CH2Cl2 solutions at room temperature. Symmetrically appreciable CPL signals are observed for the enantiomers (−)-1 and (+)-1.
Collapse
|
8
|
Jing J, Xu G, Zhang HH, Chen XH, Zhang DS, Han LZ, Qi XW, Shi ZF, Zhang XP. Enhanced circularly polarized luminescence in fluoro-substituted N^C^N-coordinating platinum(II) complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Song J, Xiao H, Fang L, Qu L, Zhou X, Xu ZX, Yang C, Xiang H. Highly Phosphorescent Planar Chirality by Bridging Two Square-Planar Platinum(II) Complexes: Chirality Induction and Circularly Polarized Luminescence. J Am Chem Soc 2022; 144:2233-2244. [DOI: 10.1021/jacs.1c11699] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jintong Song
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Hui Xiao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| | - Lizhi Fang
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Lang Qu
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Zong-Xiang Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| | - Cheng Yang
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Haifeng Xiang
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| |
Collapse
|
10
|
Li C, Jin X, Han J, Zhao T, Duan P. Toward Large Dissymmetry Factor of Circularly Polarized Luminescence in Donor-Acceptor Hybrid Systems. J Phys Chem Lett 2021; 12:8566-8574. [PMID: 34468160 DOI: 10.1021/acs.jpclett.1c02282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiroptical materials with circularly polarized luminescence (CPL) activity have aroused a lot of interest. One essential factor for evaluating the features of CPL-active materials is the dissymmetry factor (glum), which represents the circular polarization of emitted light. Essentially, for the practical application of CPL, the most important issue is to greatly improve the glum value. Recently, benefiting from the flexible and efficient design in hybrid donor-acceptor systems, more and more examples involving glum value amplification have been reported. In this Perspective, we highlight the proposed mechanism for the generation and amplification of CPL in these hybrid systems. We also present the corresponding design principles and potential pitfalls in experimental processes. We hope that this Perspective can shed light on the development of highly efficient CPL-active materials.
Collapse
Affiliation(s)
- Chengxi Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, P.R. China
| | - Xue Jin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
| | - Tonghan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, P.R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, P.R. China
| |
Collapse
|
11
|
Wang L, Xiao H, Qu L, Song J, Zhou W, Zhou X, Xiang H, Xu ZX. Axially Chiral Bis-Cycloplatinated Binaphthalenes and Octahydro-Binaphthalenes for Efficient Circularly Polarized Phosphorescence in Solution-Processed Organic Light-Emitting Diodes. Inorg Chem 2021; 60:13557-13566. [PMID: 34409839 DOI: 10.1021/acs.inorgchem.1c01861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new series of axially chiral binuclear Pt(II) complexes with bridging ligands of binaphthalenes and octahydro-binaphthalenes and auxiliary ligands of β-diketones were designed and prepared. These complexes, identified by spectral and electrochemical methods and single-crystal X-ray diffraction, emit an orange-red phosphorescence with a quantum yield up to 21% and 70% in solution and solid, respectively, due to the effect of steric hindrance from bridging ligands and the 2,3-position extension of chiral axis planes. They can be used as emitters in solution-processed organic light-emitting diodes to achieve luminance efficiency, asymmetry factor, and external quantum efficiency up to 5.4 cd A-1, 3.0 × 10-3, and 3.1%, respectively. Moreover, the essential relationships between their chemical structures and luminescence quantum efficiency and asymmetry factor are discussed, which affords explicit insights for designing circularly polarized luminescent materials and devices.
Collapse
Affiliation(s)
- Lei Wang
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Hui Xiao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China
| | - Lang Qu
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Jintong Song
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Weilan Zhou
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Haifeng Xiang
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Zong-Xiang Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China
| |
Collapse
|