1
|
Gao Y, Lei H, Bao Z, Liu X, Qin L, Yin Z, Li H, Huang S, Zhang W, Cao R. Electrocatalytic oxygen reduction with cobalt corroles bearing cationic substituents. Phys Chem Chem Phys 2023; 25:4604-4610. [PMID: 36723094 DOI: 10.1039/d2cp05786g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent decades have seen increasing interest in developing highly active and selective electrocatalysts for the oxygen reduction reaction (ORR). The active site environment of cytochrome c oxidases (CcOs), including electrostatic and hydrogen-bonding interactions, plays an important role in promoting the selective conversion of dioxygen to water. Herein, we report the synthesis of three CoIII corroles, namely 1 (with a 10-phenyl ortho-trimethylammonium cationic group), 2 (with a 10-phenyl ortho-dimethylamine group) and 3 (with a 10-phenyl para-trimethylammonium cationic group) as well as their electrocatalytic ORR activities in both acidic and neutral solutions. We discovered that 1 is much more active and selective than 2 and 3 for the electrocatalytic four-electron ORR. Importantly, 1 showed ORR activities with half-wave potentials at E1/2 = 0.75 V versus RHE in 0.5 M H2SO4 solutions and at E1/2 = 0.70 V versus RHE in neutral 0.1 M phosphate buffer solutions. This work is significant for outlining a strategy to increase both the activity and selectivity of metal corroles for the electrocatalytic ORR by introducing cationic units.
Collapse
Affiliation(s)
- Yimei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zijia Bao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinrong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Lingshuang Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhiyuan Yin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Huiyuan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Shu Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Bidirectional O2 reduction/H2O oxidation boosted by a pentadentate pyridylalkylamine copper(II) complex. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
3
|
Venegas R, Muñoz-Becerra K, Juillard S, Zhang L, Oñate R, Ponce I, Vivier V, Recio FJ, Sánchez-Sánchez CM. Proving ligand structure-reactivity correlation on multinuclear copper electrocatalysts supported on carbon black for the oxygen reduction reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Brazzolotto D, Nédellec Y, Philouze C, Holzinger M, Thomas F, Le Goff A. Functionalizing Carbon Nanotubes with Bis(2,9-dialkyl-1,10-phenanthroline)copper(II) Complexes for the Oxygen Reduction Reaction. Inorg Chem 2022; 61:14997-15006. [DOI: 10.1021/acs.inorgchem.2c01791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|