1
|
Chen W, Hu H, Feng J, Zhu L, Wu D. Synthetic, structural and reactivity studies of a boryl-ethynyl Silylene. Chem Commun (Camb) 2024; 60:5828-5831. [PMID: 38747249 DOI: 10.1039/d4cc00922c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The salt metathesis of a boryl-ethynyl lithium salt {[(HCDipN)2]B-CC-Li} with a monochlorosilylene [LSi(:)Cl; L = PhC(NtBu)2] produced an isolable boryl-ethynyl silylene {1; [(HCDipN)2]B-CC-Si(L)}. The Si(II) center in 1 possesses a nonbonding lone pair and forms a covalent bond with the ethynyl group. The characterization of 1 was carried out by multinuclear NMR spectroscopy, single-crystal X-ray structure analysis and DFT calculations. Additionally, a reactivity study of 1 was conducted towards oxygen-containing and aryl C-F substrates.
Collapse
Affiliation(s)
- Wenhao Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Haisheng Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jie Feng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Lei Zhu
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits And Vegetables, Hubei Engineering University, Xiaogan, 432000, China.
| | - Di Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
2
|
Wang C, Su MD, Fang Z, Zhou J, Zhang H, Li X, Zuo D, Zhang ZF, Li Y. SiP-heterocycles derived from a bulky phosphanylsilylene. Chem Commun (Camb) 2023; 59:10275-10278. [PMID: 37539464 DOI: 10.1039/d3cc02512h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bis(1-adamantyl)phosphanylsilylene 1 was reacted with ArCCR (Ar = Ph, 4-iPr-C6H4, 3-F-C6H4; R = H, Ph) at 80 °C under microwave irradiation to afford fluorescence-active SiP-heterocycles 3a-d, which may undergo unique isomerizations starting from silirene intermediates. Moreover, the treatment of 1 with AdCP furnished a heavy congener of cyclopentadiene (4), whose formation involves cleavage of the Si(II)-P bond that is rarely observed in silylene chemistry.
Collapse
Affiliation(s)
- Chenfeng Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi, 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zijie Fang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Jiahao Zhou
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Haoqi Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Xiaodi Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Darui Zuo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi, 60004, Taiwan
| | - Yan Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| |
Collapse
|
3
|
Wu M, He Y, Zhang L, Wei R, Wang D, Liu J, Liu LL, Tan G. An Acyclic Silylone Stabilized by Mesoionic Carbene. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Yuhao He
- Soochow University Chemistry CHINA
| | - Li Zhang
- Guangxi University of Science and Technology Chemistry CHINA
| | - Rui Wei
- Southern University of Science and Technology Chemistry CHINA
| | | | | | - Liu Leo Liu
- SUSTC: Southern University of Science and Technology Chemistry CHINA
| | - Gengwen Tan
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Ren'ai Road #199 215123 Suzhou CHINA
| |
Collapse
|
4
|
Dai Y, Bao M, Wang W, Xie Z, Liu C, Su Y. Crystalline
Germanium‐Dipyrromethene
Radicals: from a Delocalized Neutral to a Localized Cation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuyang Dai
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection Soochow University Suzhou 215123 China
| | - Manling Bao
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection Soochow University Suzhou 215123 China
| | - Wenjuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection Soochow University Suzhou 215123 China
| | - Zhuofeng Xie
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection Soochow University Suzhou 215123 China
| | - Chunmeng Liu
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection Soochow University Suzhou 215123 China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection Soochow University Suzhou 215123 China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210023 China
| |
Collapse
|
5
|
Feng Z, Tang S, Su Y, Wang X. Recent advances in stable main group element radicals: preparation and characterization. Chem Soc Rev 2022; 51:5930-5973. [PMID: 35770612 DOI: 10.1039/d2cs00288d] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical species are significant in modern chemistry. Their unique chemical bonding and novel physicochemical properties play significant roles not only in fundamental chemistry, but also in materials science. Main group element radicals are usually transient due to their high reactivity. Highly stable radicals are often stabilized by π-delocalization, sterically demanding ligands, carbenes and weakly coordinating anions in recent years. This review presents the recent advances in the synthesis, characterization, reactivity and physical properties of isolable main group element radicals.
Collapse
Affiliation(s)
- Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry, School of Chemistry Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Maiti A, Elvers BJ, Bera S, Lindl F, Krummenacher I, Ghosh P, Braunschweig H, Yildiz CB, Schulzke C, Jana A. Disclosing Cyclic(Alkyl)(Amino)Carbenes as One-Electron Reductants: Synthesis of Acyclic(Amino)(Aryl)Carbene-Based Kekulé Diradicaloids. Chemistry 2022; 28:e202104567. [PMID: 35262232 PMCID: PMC9321839 DOI: 10.1002/chem.202104567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/10/2022]
Abstract
Herein, we disclose cyclic(alkyl)(amino)carbenes (CAACs) to be one-electron reductants under the formation of a transient radical cation as indicated by EPR spectroscopy. The disclosed CAAC reducing reactivity was used to synthesize acyclic(amino)(aryl)carbene-based Thiele and Chichibabin hydrocarbons, a new class of Kekulé diradicaloids. The results demonstrate CAACs to be potent organic reductants. Notably, the acyclic(amino)(aryl)carbene-based Chichibabin's hydrocarbon shows an appreciable population of the triplet state at room temperature, as evidenced by both variable-temperature NMR and EPR spectroscopy.
Collapse
Affiliation(s)
- Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046, TelanganaIndia
| | - Benedict J. Elvers
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Sachinath Bera
- Department of ChemistryRamakrishna Mission Residential College NarendrapurKolkata700103India
- Shahid Matangini Hazra Govt General Degree College for Women TamlukPurba Medinipur721649India
| | - Felix Lindl
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Prasanta Ghosh
- Department of ChemistryRamakrishna Mission Residential College NarendrapurKolkata700103India
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal PlantsAksaray UniversityAksaray68100Turkey
| | - Carola Schulzke
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046, TelanganaIndia
| |
Collapse
|
7
|
Kumar Kushvaha S, Mishra A, Roesky HW, Chandra Mondal K. Recent Advances in the Domain of Cyclic (Alkyl)(Amino) Carbenes. Chem Asian J 2022; 17:e202101301. [PMID: 34989475 PMCID: PMC9307053 DOI: 10.1002/asia.202101301] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/25/2021] [Indexed: 12/03/2022]
Abstract
Isolation of cyclic (alkyl) amino carbenes (cAACs) in 2005 has been a major achievement in the field of stable carbenes due to their better electronic properties. cAACs and bicyclic(alkyl)(amino)carbene (BicAAC) in essence are the most electrophilic as well as nucleophilic carbenes are known till date. Due to their excellent electronic properties in terms of nucleophilic and electrophilic character, cAACs have been utilized in different areas of chemistry, including stabilization of low valent main group and transition metal species, activation of small molecules, and catalysis. The applications of cAACs in catalysis have opened up new avenues of research in the field of cAAC chemistry. This review summarizes the major results of cAAC chemistry published until August 2021.
Collapse
Affiliation(s)
| | - Ankush Mishra
- Department of ChemistryIndian Institute of Technology MadrasChennai600036India
| | - Herbert W. Roesky
- Institute of Inorganic ChemistryTammannstrasse 4D-37077GöttingenGermany
| | | |
Collapse
|
8
|
Cyclic (alkyl)(amino)carbene (CAAC) ligands: Electronic structure and application as chemically- and redox-non-innocent ligands and chromophores. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Dutta S, Singh K, Koley D. Computational Exploration of Mechanistic Avenues in Metal-Free CO 2 Reduction to CO by Disilyne Bisphosphine Adduct and Phosphonium Silaylide. Chem Asian J 2021; 16:3492-3508. [PMID: 34499404 DOI: 10.1002/asia.202100847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/03/2021] [Indexed: 01/18/2023]
Abstract
Recent years have seen a growing interest in metal-free CO2 activation by silylenes, silylones, and silanones. However, compared to mononuclear silicon species, CO2 reduction mediated by dinuclear silicon compounds, especially disilynes, has been less explored. We have carried out extensive computational investigations to explore the mechanistic avenues in CO2 reduction to CO by donor-stabilized disilyne bisphosphine adduct (R1M ) and phosphonium silaylide (R2) using density functional theory calculations. Theoretical calculations suggest that R1M exhibits donor-stabilized bis(silylene) bonding features with unusual Si-Si multiple bonding. Various modes of CO2 coordination to R1M have been investigated and the coordination of CO2 by the carbon center to R1M is found to be kinetically more facile than that by oxygen involving only one or both the silicon centers. Both the theoretically predicted reaction mechanisms of R1M and R2-mediated CO2 reduction reveal the crucial role of silicon-centered lone pairs in CO2 activations and generation of key intermediates possessing enormous strain in the Si-C-O ring, which plays the pivotal role in CO extrusion.
Collapse
Affiliation(s)
- Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India
| | - Kalyan Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India
| |
Collapse
|