1
|
Liu X, Ki T, Deng G, Yoo S, Lee K, Lee BH, Hyeon T, Bootharaju MS. Recent advances in synthesis and properties of silver nanoclusters. NANOSCALE 2024; 16:12329-12344. [PMID: 38860477 DOI: 10.1039/d4nr01788a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Achieving atomic precision in nanostructured materials is essential for comprehending formation mechanisms and elucidating structure-property relationships. Within the realm of nanoscience and technology, atomically precise ligand-protected noble metal nanoclusters (NCs) have emerged as a rapidly expanding area of interest. These clusters manifest quantum confinement-induced optoelectronic, photophysical, and chemical properties, along with remarkable catalytic capabilities. Among coinage metals, silver distinguishes itself for the fabrication of stable nanoclusters, primarily due to its cost-effectiveness compared to gold. This minireview provides an overview of recent advancements since 2020 in synthetic methodologies and ligand selections toward attaining NCs boasting a minimum of two free valence electrons. Additionally, it explores strategies for fine-tuning optical properties. The discussion extends to surface reactivity, elucidating how exposure to ligands, heat, and light induces transformations in size and structure. Of paramount significance are the applications of silver NCs in catalytic reactions for energy and chemical conversion, supplemented by in-depth mechanistic insights. Furthermore, the review delineates challenges and outlines future directions in the NC field, with an eye toward the design of new functional materials and prospective applications in diverse technologies, including optoelectronics, energy conversion, and fine chemical synthesis.
Collapse
Affiliation(s)
- Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Byoung-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Hu Y, Zhang Q, Zhou J, Guo S, Xu J, Zheng H, Yang Y. Supramolecularly Dimeric Assemble of Planar Cu 13 Clusters Controlled by the Length of Spacers of Diphosphine. Inorg Chem 2023; 62:21091-21100. [PMID: 38079613 DOI: 10.1021/acs.inorgchem.3c02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The controlled formation of dimeric clusters is challenging. Three copper(I) clusters, labeled as {Cu13[o-Ph(C≡C)2]6(L)4}(ClO4), were synthesized by using three different ligands, including 1,4-bis(diphenylphosphino)butane (dppb), 1,5-bis(diphenylphosphino)pentane (dpppe), and bis(diphenylphosphino)hexane (dpph). By increasing the flexibility of alkyl spacers in the diphosphine ligands, the relative positions of the phenyl rings could be optimized to achieve efficient packing with maximized intercluster interactions. In the crystal structures, cluster 1 with dppb ligands did not display interlocked structures. In contrast, cluster 2 with dpppe ligands formed supramolecularly interlocked polymers through weak π-π interactions and C-H···π interactions, while cluster 3 employing dpph ligands formed supramolecularly interlocked dimers with strong π-π interactions and C-H···π interactions. The supramolecular dimer of 3 was also evidenced by analyses through electrospray ionization mass spectrometry and transmission electron microscopy. Density functional theory calculation was used to understand the electronic structure and transitions. Supramolecularly interlocked polymers/dimers with rigid structures exhibited higher quantum efficiency. The solution of these clusters demonstrated remarkable aggregation-induced emission enhancements. This study presents unique examples of planar luminescent copper clusters, featuring the first serial dialkynyl-protected cluster. It underlines the importance of ligand flexibility in creating supramolecular cluster dimers.
Collapse
Affiliation(s)
- Yun Hu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qian Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jie Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shan Guo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jia Xu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Hao Zheng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
3
|
Li L, Lv Y, Sheng H, Du Y, Li H, Yun Y, Zhang Z, Yu H, Zhu M. A low-nuclear Ag 4 nanocluster as a customized catalyst for the cyclization of propargylamine with CO 2. Nat Commun 2023; 14:6989. [PMID: 37914680 PMCID: PMC10620197 DOI: 10.1038/s41467-023-42723-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
The preparation of 2-Oxazolidinones using CO2 offers opportunities for green chemistry, but multi-site activation is difficult for most catalysts. Here, A low-nuclear Ag4 catalytic system is successfully customized, which solves the simultaneous activation of acetylene (-C≡C) and amino (-NH-) and realizes the cyclization of propargylamine with CO2 under mild conditions. As expected, the Turnover Number (TON) and Turnover Frequency (TOF) values of the Ag4 nanocluster (NC) are higher than most of reported catalysts. The Ag4* NC intermediates are isolated and confirmed their structures by Electrospray ionization (ESI) and 1H Nuclear Magnetic Resonance (1H NMR). Additionally, the key role of multiple Ag atoms revealed the feasibility and importance of low-nuclear catalysts at the atomic level, confirming the reaction pathways that are inaccessible to the Ag single-atom catalyst and Ag2 NC. Importantly, the nanocomposite achieves multiple recoveries and gram scale product acquisition. These results provide guidance for the design of more efficient and targeted catalytic materials.
Collapse
Affiliation(s)
- Lin Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Hongting Sheng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China.
| | - Yonglei Du
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Haifeng Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yapei Yun
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Ziyi Zhang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Hefei, 230601, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China.
- Anhui Tongyuan Environment Energy Saving Co., Ltd., Hefei, 230041, China.
| |
Collapse
|
4
|
Basu S, Perić Bakulić M, Sanader Maršić Ž, Bonačić-Koutecký V, Amdursky N. Excitation-Dependent Fluorescence with Excitation-Selective Circularly Polarized Luminescence from Hierarchically Organized Atomic Nanoclusters. ACS NANO 2023; 17:16644-16655. [PMID: 37638669 DOI: 10.1021/acsnano.3c02846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Nanometer-scaled objects are known to have dimension-related properties, but sometimes the assembly of such objects can lead to the emergence of other properties. Here, we show the assembly of atomically precise gold nanoclusters into large fibrillar structures that are featuring excitation-dependent luminescence with an excitation-selective circularly polarized luminescence (CPL), even though all components are achiral. The origin of CPL in the assembly of atomic clusters has been attributed to the hierarchical organization of atomic clusters into fibrillar structures, mediated via a hydrogen bonding interaction with a surfactant. We follow the assembly process both experimentally and computationally showing the advance in the structural formation along with its chiroptical electronic properties, i.e., circular dichroism (CD) and CPL. Our study here can assist in the rational design of materials featuring chiroptical properties, thus leading to a controlled CPL activity.
Collapse
Affiliation(s)
- Srestha Basu
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Martina Perić Bakulić
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
| | - Željka Sanader Maršić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
- Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
5
|
Horita Y, Ishimi M, Negishi Y. Anion-templated silver nanoclusters: precise synthesis and geometric structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2203832. [PMID: 37251258 PMCID: PMC10215029 DOI: 10.1080/14686996.2023.2203832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023]
Abstract
Metal nanoclusters (NCs) are gaining much attention in nanoscale materials research because they exhibit size-specific physicochemical properties that are not observed in the corresponding bulk metals. Among them, silver (Ag) NCs can be precisely synthesized not only as pure Ag NCs but also as anion-templated Ag NCs. For anion-templated Ag NCs, we can expect the following capabilities: 1) size and shape control by regulating the central anion (anion template); 2) stabilization by adjusting the charge interaction between the central anion and surrounding Ag atoms; and 3) functionalization by selecting the type of central anion. In this review, we summarize the synthesis methods and influences of the central anion on the geometric structure of anion-templated Ag NCs, which include halide ions, chalcogenide ions, oxoanions, polyoxometalate, or hydride/deuteride as the central anion. This summary provides a reference for the current state of anion-templated Ag NCs, which may promote the development of anion-templated Ag NCs with novel geometric structures and physicochemical properties.
Collapse
Affiliation(s)
- Yusuke Horita
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Mai Ishimi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Japan
| |
Collapse
|
6
|
Jana A, Unnikrishnan PM, Poonia AK, Roy J, Jash M, Paramasivam G, Machacek J, Adarsh KNVD, Base T, Pradeep T. Carboranethiol-Protected Propeller-Shaped Photoresponsive Silver Nanomolecule. Inorg Chem 2022; 61:8593-8603. [PMID: 35621298 DOI: 10.1021/acs.inorgchem.2c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis, structural characterization, and photophysical properties of a propeller-shaped Ag21 nanomolecule with six rotary arms, protected with m-carborane-9-thiol (MCT) and triphenylphosphine (TPP) ligands. Structural analysis reveals that the nanomolecule has an Ag13 central icosahedral core with six directly connected silver atoms and two more silver atoms connected through three Ag-S-Ag bridging motifs. While 12 MCT ligands protect the core through metal-thiolate bonds in a 3-6-3-layered fashion, two TPP ligands solely protect the two bridging silver atoms. Interestingly, the rotational orientation of a silver sulfide staple motif is opposite to the orientation of carborane ligands, resembling the existence of a bidirectional rotational orientation in the nanomolecule. Careful analysis reveals that the orientation of carborane ligands on the cluster's surface resembles an assembly of double rotors. The zero circular dichroism signal indicates its achiral nature in solution. There are multiple absorption peaks in its UV-vis absorption spectrum, characteristic of a quantized electronic structure. The spectrum appears as a fingerprint for the cluster. High-resolution electrospray ionization mass spectrometry proves the structure and composition of the nanocluster in solution, and systematic fragmentation of the molecular ion starts with the loss of surface-bound ligands with increasing collision energy. Its multiple optical absorption features are in good agreement with the theoretically calculated spectrum. The cluster shows a narrow near-IR emission at 814 nm. The Ag21 nanomolecule is thermally stable at ambient conditions up to 100 °C. However, white-light illumination (lamp power = 120-160 W) shows photosensitivity, and this induces structural distortion, as confirmed by changes in the Raman and electronic absorption spectra. Femtosecond and nanosecond transient absorption studies reveal an exceptionally stable excited state having a lifetime of 3.26 ± 0.02 μs for the carriers, spread over a broad wavelength region of 520-650 nm. The formation of core-centered long-lived carriers in the excited state is responsible for the observed light-activated structural distortion.
Collapse
Affiliation(s)
- Arijit Jana
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Parvathy M Unnikrishnan
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Ajay K Poonia
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Jayoti Roy
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Madhuri Jash
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Ganesan Paramasivam
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Jan Machacek
- Department of Synthesis, Institute of Inorganic Chemistry, The Czech Academy of Science 1001 Husinec, Rez 25068, Czech Republic
| | | | - Tomas Base
- Department of Synthesis, Institute of Inorganic Chemistry, The Czech Academy of Science 1001 Husinec, Rez 25068, Czech Republic
| | - Thalappil Pradeep
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| |
Collapse
|
7
|
Das AK, Biswas S, Manna SS, Pathak B, Mandal S. Solvent-Dependent Photophysical Properties of a Semiconducting One-Dimensional Silver Cluster-Assembled Material. Inorg Chem 2021; 60:18234-18241. [PMID: 34747176 DOI: 10.1021/acs.inorgchem.1c02867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unraveling the total structure of the atom-precise silver cluster-assembled materials (CAMs) is extremely significant to elucidating the structure-property correlation, but it is a very challenging task. Herein, a new silver CAM is synthesized by a facile synthetic pathway with a unique distorted elongated square-bipyramid-based Ag11 core geometry. The core is protected by two different kinds of the surface protecting ligands (adamantanethiolate and trifluoroacetate) and connected through a bidentate organic linker. The crystallographic data show that this material embraces a one-dimensional periodic structure that orchestrates by various noncovalent interactions to build a thermally stable supramolecular assembly. Further characterization confirms its n-type semiconducting property with an optical band gap of 1.98 eV. The impact of an adamantanethiol-protected silver core on the optical properties of this type of periodic framework is analyzed by the UV-vis absorbance and emission phenomena. Theoretical calculations predicted that the occupied states are majorly contributed by Ag-S. Solvent-dependent photoluminescence studies proved that a polar solvent can significantly perturb the metal thiolate and thiolate-centered frontier molecular orbitals that are involved in the electronic transitions.
Collapse
Affiliation(s)
- Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 69551, India
| | - Sourav Biswas
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 69551, India
| | - Surya Sekhar Manna
- Department of Chemistry, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India
| | | |
Collapse
|
8
|
Li S, Tian W, Liu Y. The ligand effect of atomically precise gold nanoclusters in tailoring catalytic properties. NANOSCALE 2021; 13:16847-16859. [PMID: 34622913 DOI: 10.1039/d1nr05232b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is well known that surface ligands are vital layers for ligand-protected Aun nanoclusters. Improving the knowledge of the relationship between ligands and catalytic properties is a forefront research topic for Aun nanoclusters. Enormous effort has been devoted to realizing the ligand effect in synthesis, including well-controlled sizes and shapes as well as structural transformation. However, the crucial function of surface ligands has not been addressed yet in catalytic reactions. Here, this review mainly aims to summarize the recent progress concerning the influence of surface ligand layers on catalytic activity and selectivity, based on the various types of ligand protected Aun nanoclusters. Besides, the potential challenges and opportunities of Aun nanoclusters are indicated, mainly in terms of surface ligands to guide the improvement of catalytic performances.
Collapse
Affiliation(s)
- Shuohao Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Wenjiang Tian
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Yuanyuan Liu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
9
|
He L, Dong T. Progress in controlling the synthesis of atomically precise silver nanoclusters. CrystEngComm 2021. [DOI: 10.1039/d1ce01217g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This short review was designed to summarize the advances in synthesis methods of silver nanoclusters.
Collapse
Affiliation(s)
- Lizhong He
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Tingting Dong
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, PR China
| |
Collapse
|