1
|
Palmeira-Mello MV, Costa AR, de Oliveira LP, Blacque O, Gasser G, Batista AA. Exploring the potential of ruthenium(II)-phosphine-mercapto complexes as new anticancer agents. Dalton Trans 2024; 53:10947-10960. [PMID: 38895770 DOI: 10.1039/d4dt01191k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The search for new metal-based anticancer drug candidates is a fundamental task in medicinal inorganic chemistry. In this work, we assessed the potential of two new Ru(II)-phosphine-mercapto complexes as potential anticancer agents. The complexes, with the formula [Ru(bipy)(dppen)(Lx)]PF6 [(1), HL1 = 2-mercapto-pyridine and (2), HL2 = 2-mercapto-pyrimidine, bipy = 2,2'-bipyridine, dppen = cis-1,2-bis(diphenylphosphino)-ethylene] were synthesized and characterized by nuclear magnetic resonance (NMR) [1H, 31P(1H), and 13C], high resolution mass spectrometry (HR-MS), cyclic voltammetry, infrared and UV-Vis spectroscopies. Complex 2 was obtained as a mixture of two isomers, 2a and 2b, respectively. The composition of these metal complexes was confirmed by elemental analysis and liquid chromatography-mass spectrometry (LC-MS). To obtain insights into their lipophilicity, their distribution coefficients between n-octanol/PBS were determined. Both complexes showed affinity mainly for the organic phase, presenting positive log P values. Also, their stability was confirmed over 48 h in different media (i.e., DMSO, PBS and cell culture medium) via HPLC, UV-Vis and 31P{1H} NMR spectroscopies. Since enzymes from the P-450 system play a crucial role in cellular detoxification and metabolism, the microsomal stability of 1, which was found to be the most interesting compound of this study, was investigated using human microsomes to verify its potential oxidation in the liver. The analyses by LC-MS and ESI-MS reveal three main metabolites, obtained by oxidation in the dppen and bipy moieties. Moreover, 1 was able to interact with human serum albumin (HSA). The cytotoxicity of the metal complexes was tested in different cancerous and non-cancerous cell lines. Complex 1 was found to be more selective than cisplatin against MDA-MB-231 breast cancer cells when compared to MCF-10A non-cancerous cells. In addition, complex 1 affects cell morphology and migration, and inhibits colony formation in MDA-MB-231 cells, making it a promising cytotoxic agent against breast cancer.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | - Analu R Costa
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| | - Leticia P de Oliveira
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | - Alzir A Batista
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Zain Aldin M, Zaragoza G, Choquenet E, Blampain G, Berger G, Delaude L. Synthesis, characterization, and biological activity of cationic ruthenium-arene complexes with sulfur ligands. J Biol Inorg Chem 2024; 29:441-454. [PMID: 38753160 DOI: 10.1007/s00775-024-02052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/08/2024] [Indexed: 06/20/2024]
Abstract
Five cationic ruthenium-arene complexes with the generic formula [Ru(SAc)(S2C·NHC)(p-cymene)](PF6) (5a-e) were prepared in almost quantitative yields using a straightforward one-pot, two-step experimental procedure starting from [RuCl2(p-cymene)]2, an imidazol(in)ium-2-dithiocarboxylate (NHC·CS2) zwitterion, KSAc, and KPF6. These half-sandwich compounds were fully characterized by various analytical techniques and the molecular structures of two of them were solved by X-ray diffraction analysis, which revealed the existence of an intramolecular chalcogen bond between the oxygen atom of the thioacetate ligand and a proximal sulfur atom of the dithiocarboxylate unit. DFT calculations showed that the C=S…O charge transfer amounted to 2.4 kcal mol-1. The dissolution of [Ru(SAc)(S2C·IMes)(p-cymene)](PF6) (5a) in moist DMSO-d6 at room temperature did not cause the dissociation of its sulfur ligands. Instead, p-cymene was slowly released to afford the 12-electron [Ru(SAc)(S2C·IMes)]+ cation that could be detected by mass spectrometry. Monitoring the solvolysis process by 1H NMR spectroscopy showed that more than 22 days were needed to fully decompose the starting ruthenium-arene complex. Compounds 5a-e exhibited a high antiproliferative activity against human glioma Hs683 and human lung carcinoma A549 cancer cells. In particular, the IMes derivative (5a) was the most potent compound of the series, achieving toxicities similar to those displayed by marketed platinum drugs.
Collapse
Affiliation(s)
- Mohammed Zain Aldin
- Laboratory of Catalysis, MolSys Research Unit, Institut de Chimie Organique (B6a), Université de Liège, Allée du Six Août 13, 4000, Liège, Belgium
| | - Guillermo Zaragoza
- Unidade de Difracción de Raios X, RIAIDT, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
| | - Eva Choquenet
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculté de Pharmacie, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Guillaume Blampain
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculté de Pharmacie, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Gilles Berger
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculté de Pharmacie, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Lionel Delaude
- Laboratory of Catalysis, MolSys Research Unit, Institut de Chimie Organique (B6a), Université de Liège, Allée du Six Août 13, 4000, Liège, Belgium.
| |
Collapse
|
3
|
D’Amato A, Mariconda A, Iacopetta D, Ceramella J, Catalano A, Sinicropi MS, Longo P. Complexes of Ruthenium(II) as Promising Dual-Active Agents against Cancer and Viral Infections. Pharmaceuticals (Basel) 2023; 16:1729. [PMID: 38139855 PMCID: PMC10747139 DOI: 10.3390/ph16121729] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Poor responses to medical care and the failure of pharmacological treatment for many high-frequency diseases, such as cancer and viral infections, have been widely documented. In this context, numerous metal-based substances, including cisplatin, auranofin, various gold metallodrugs, and ruthenium complexes, are under study as possible anticancer and antiviral agents. The two Ru(III) and Ru(II) complexes, namely, BOLD-100 and RAPTA-C, are presently being studied in a clinical trial and preclinical studies evaluation, respectively, as anticancer agents. Interestingly, BOLD-100 has also recently demonstrated antiviral activity against SARS-CoV-2, which is the virus responsible for the COVID-19 pandemic. Over the last years, much effort has been dedicated to discovering new dual anticancer-antiviral agents. Ru-based complexes could be very suitable in this respect. Thus, this review focuses on the most recent studies regarding newly synthesized Ru(II) complexes for use as anticancer and/or antiviral agents.
Collapse
Affiliation(s)
- Assunta D’Amato
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| | | | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| |
Collapse
|
4
|
Bulygina LA, Khrushcheva NS, Nelyubina YV, Dorovatovskii P, Strelkova TV, Alexeev MS, Mandegani Z, Nabavizadeh SM, Kuznetsov NY. Bilateral metalloheterocyclic systems based on palladacycle and piperidine-2,4-dione pharmacophores. Org Biomol Chem 2023; 21:2337-2354. [PMID: 36825470 DOI: 10.1039/d3ob00022b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The design of molecules with effective anticancer properties constructed from both dually active metal complex and organic fragments is a novel trend in medicinal chemistry. This concept suggests the impact of a drug on several biological targets or the synergistic action of both fragments as a single unit. We propose that the combination of a Pd-metallocomplex fragment and an organic unit can be an interesting model for anticancer drug discovery. The first phase in the development of such suggested molecules is the synthesis of bilateral metallosystems containing bioactive 6-substituted piperidin-2-one and a palladated N-phenylpyrazolic fragment. Both fragments were incorporated into one molecule through the fused pyrazole-piperidine-2-one unit followed by pyrazol-directed cyclopalladation of the phenyl-group with Pd(OAc)2. An effect of acceleration of the rate of the palladation by NH-lactam was observed. The synthesized hybrid palladacycles have been characterized and tested for their cytotoxic activity on three cancerous cell lines as PPh3 complexes, revealing structures with potential for further development and structural optimization.
Collapse
Affiliation(s)
- Ludmila A Bulygina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Natalya S Khrushcheva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Pavel Dorovatovskii
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova pl., 1, Moscow, Russian Federation
| | - Tatiana V Strelkova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Michael S Alexeev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation. .,A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky Prospect 29, 119991, Moscow, Russian Federation
| | - Zeinab Mandegani
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - S Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Nikolai Yu Kuznetsov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation. .,A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky Prospect 29, 119991, Moscow, Russian Federation
| |
Collapse
|
5
|
Juszczak M, Das S, Kosińska A, Rybarczyk-Pirek AJ, Wzgarda-Raj K, Tokarz P, Vasudevan S, Chworos A, Woźniak K, Rudolf B. Piano-stool ruthenium(II) complexes with maleimide and phosphine or phosphite ligands: synthesis and activity against normal and cancer cells. Dalton Trans 2023; 52:4237-4250. [PMID: 36897334 DOI: 10.1039/d2dt04083b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In these studies, we designed and investigated cyto- and genotoxic potential of five ruthenium cyclopentadienyl complexes bearing different phosphine and phosphite ligands. All of the complexes were characterized with spectroscopic analysis (NMR, FT-IR, ESI-MS, UV-vis, fluorescence and XRD (for two compounds)). For biological studies, we used three types of cells - normal peripheral blood mononuclear (PBM) cells, leukemic HL-60 cells and doxorubicin-resistance HL-60 cells (HL-60/DR). We compared the results obtained with those obtained for the complex with maleimide ligand CpRu(CO)2(η1-N-maleimidato) 1, which we had previously reported. We observed that the complexes CpRu(CO)(PPh3)(η1-N-maleimidato) 2a and CpRu(CO)(P(OEt)3)(η1-N-maleimidato) 3a were the most cytotoxic for HL-60 cells and non-cytotoxic for normal PBM cells. However, complex 1 was more cytotoxic for HL-60 cells than complexes 2a and 3a (IC50 = 6.39 μM vs. IC50 = 21.48 μM and IC50 = 12.25 μM, respectively). The complex CpRu(CO)(P(OPh)3)(η1-N-maleimidato) 3b is the most cytotoxic for HL-60/DR cells (IC50 = 104.35 μM). We found the genotoxic potential of complexes 2a and 3a only in HL-60 cells. These complexes also induced apoptosis in HL-60 cells. Docking studies showed that complexes 2a and CpRu(CO)(P(Fu)3)(η1-N-maleimidato) 2b have a small ability to degrade DNA, but they may cause a defect in DNA damage repair mechanisms leading to cell death. This hypothesis is corroborated with the results obtained in the plasmid relaxation assay in which ruthenium complexes bearing phosphine and phosphite ligands induce DNA breaks.
Collapse
Affiliation(s)
- Michał Juszczak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Genetics, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Sujoy Das
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, 91-403 Lodz, Poland.
| | - Aneta Kosińska
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, 91-403 Lodz, Poland.
| | - Agnieszka J Rybarczyk-Pirek
- University of Lodz, Faculty of Chemistry, Department of Physical Chemistry, Pomorska 163/165, 90-236 Lodz, Poland
| | - Kinga Wzgarda-Raj
- University of Lodz, Faculty of Chemistry, Department of Physical Chemistry, Pomorska 163/165, 90-236 Lodz, Poland
| | - Paulina Tokarz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Genetics, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Saranya Vasudevan
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Katarzyna Woźniak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Genetics, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Bogna Rudolf
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, 91-403 Lodz, Poland.
| |
Collapse
|
6
|
Eusamio J, Medina YM, Córdoba JC, Vidal-Ferran A, Sainz D, Gutiérrez A, Font-Bardia M, Grabulosa A. Rhodium and ruthenium complexes of methylene-bridged, P-stereogenic, unsymmetrical diphosphanes. Dalton Trans 2023; 52:2424-2439. [PMID: 36723212 DOI: 10.1039/d2dt04026c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enantiopure P-stereogenic methylphosphane-boranes (SP)-P(BH3)PhArMe (ArMe; Ar = 1-naphthyl (NpMe), and 2-biphenylyl (BiphMe)) have been used to prepare diphosphanes of the type ArPhPCH2PR2 (R = Ph, iPr or tBu; ArR). The ligands have been reacted with [Rh(COD)2]BF4 to furnish the corresponding six monochelated [Rh(COD)(ArR)]BF4 organometallic compounds (RhArR) or, depending on the reaction conditions, the bis(chelated) coordination compound [Rh(BiphiPr)2]BF4 as a mixture of cis and trans isomers. The crystal structure of cis-[Rh(BiphiPr)2]BF4 was obtained. The coordination of the BiphR with [RuCl(μ-Cl)(η6-p-cymene)2]2 under different conditions produced cationic chelated complexes of the type [RuCl(η6-p-cymene)(κ2-BiphR)]PF6 (RuBiphR) and the neutral monocoordinated complex [RuCl2(η6-p-cymene)(κ1-BiphPh)] (RuBiphPh') with the uncoordinated P-stereogenic moiety. The Rh(I) complexes were used in the catalytic hydrogenation of functionalized olefins and the Ru(II) complexes were tested in the transfer hydrogenation of acetophenone. Both precursors displayed good activities with moderate enantioselectivities.
Collapse
Affiliation(s)
- Javier Eusamio
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028, Barcelona, Spain.
| | - Yaiza M Medina
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028, Barcelona, Spain.
| | - Javier C Córdoba
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain
| | - Anton Vidal-Ferran
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028, Barcelona, Spain. .,Institució Catalana de Rercerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, E-08010, Barcelona, Spain
| | - Daniel Sainz
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028, Barcelona, Spain.
| | - Albert Gutiérrez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028, Barcelona, Spain.
| | - Mercè Font-Bardia
- Unitat de Difracció de Raigs X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Solé i Sabarís 1-3, E-08028, Barcelona, Spain
| | - Arnald Grabulosa
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028, Barcelona, Spain.
| |
Collapse
|
7
|
Sow IS, Gelbcke M, Meyer F, Vandeput M, Marloye M, Basov S, Van Bael MJ, Berger G, Robeyns K, Hermans S, Yang D, Fontaine V, Dufrasne F. Synthesis and biological activity of iron(II), iron(III), nickel(II), copper(II) and zinc(II) complexes of aliphatic hydroxamic acids. J COORD CHEM 2023. [DOI: 10.1080/00958972.2023.2166407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ibrahima Sory Sow
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Michel Gelbcke
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Franck Meyer
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie Vandeput
- Pharmacognosy, Bioanalysis and Drug Discovery Research Unit (RD3-PBM), Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Mickael Marloye
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Sergey Basov
- Quantum Solid State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Margriet J. Van Bael
- Quantum Solid State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Gilles Berger
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Sophie Hermans
- Institute of Condensed Matter and Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Dong Yang
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan, China
| | - Véronique Fontaine
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - François Dufrasne
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
8
|
Hu X, Guo L, Liu M, Zhang Q, Gong Y, Sun M, Feng S, Xu Y, Liu Y, Liu Z. Increasing Anticancer Activity with Phosphine Ligation in Zwitterionic Half-Sandwich Iridium(III), Rhodium(III), and Ruthenium(II) Complexes. Inorg Chem 2022; 61:20008-20025. [PMID: 36426422 DOI: 10.1021/acs.inorgchem.2c03279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The synthesis and biological assessment of neutral or cationic platinum group metal-based anticancer complexes have been extremely studied, whereas there are few reports on the corresponding zwitterionic complexes. Herein, the synthesis, characterization, and bioactivity of zwitterionic half-sandwich phosphine-imine iridium(III), rhodium(III), and ruthenium(II) complexes were presented. The sulfonated phosphine-imine ligand and a group of zwitterionic half-sandwich P,N-chelating organometallic complexes were fully characterized by nuclear magnetic resonance (NMR), mass spectrum (electrospray ionization, ESI), elemental analysis, and X-ray crystallography. The solution stability of these complexes and their spectral properties were also determined. Notably, almost all of these complexes showed enhanced anticancer activity against model HeLa and A549 cancer cells than the corresponding zwitterionic pyridyl-imine N,N-chelating iridium(III) and ruthenium(II) complexes, which have exhibited inactive or low active in our previous work. The increase in the lipophilic property and intracellular uptake levels of these zwitterionic P,N-chelating complexes appeared to be associated with their superior cytotoxicity. In addition, these complexes showed biomolecular interactions with bovine serum albumin (BSA). The flow cytometry studies indicated that the representative complex Ir1 could induce early-stage apoptosis in A549 cells. Further, confocal microscopy imaging analysis displayed that Ir1 entered A549 cells through the energy-dependent pathway, targeted lysosome, and could cause lysosomal damage. In particular, these complexes could impede cell migration in A549 cells.
Collapse
Affiliation(s)
- Xueyan Hu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lihua Guo
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mengqi Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Qiuya Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuwen Gong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mengru Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Shenghan Feng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Youzhi Xu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yiming Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhe Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
9
|
Infante-Tadeo S, Rodríguez-Fanjul V, Vequi-Suplicy CC, Pizarro AM. Fast Hydrolysis and Strongly Basic Water Adducts Lead to Potent Os(II) Half-Sandwich Anticancer Complexes. Inorg Chem 2022; 61:18970-18978. [DOI: 10.1021/acs.inorgchem.2c03246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sonia Infante-Tadeo
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, Faraday 9, Madrid 28049, Spain
| | | | | | - Ana M. Pizarro
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, Faraday 9, Madrid 28049, Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA, 28049 Madrid, Spain
| |
Collapse
|
10
|
Citta RJ, Koteles BL, Delgado-Perez B, Chan BC, Kalman SE. Ruthenium(II) Complexes of an Imidazole Carboxamido Ligand for Base-Free Transfer Hydrogenation in Air. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard J. Citta
- Chemistry Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, New Jersey 08205, United States
| | - Brandon L. Koteles
- Chemistry Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, New Jersey 08205, United States
| | - Brenda Delgado-Perez
- Chemistry Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, New Jersey 08205, United States
| | - Benny C. Chan
- Chemistry Department, The College of New Jersey, Ewing, New Jersey 08618, United States
| | - Steven E. Kalman
- Chemistry Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, New Jersey 08205, United States
| |
Collapse
|
11
|
Margaret McCutcheon M, Freindorf M, Kraka E. Bonding in Nitrile Photo-dissociating Ruthenium Drug Candidates --A Local Vibrational Mode Study. J Chem Phys 2022; 157:014301. [DOI: 10.1063/5.0094567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we investigated bonding features 15 ruthenium complexes of the type [Ru(tpy)(L)-(CH3CN)]n+, containing the tridentate tpy ligand (tpy = 2,2':6',2'--terpyridine) and various bidentate ancillary ligands, 12 compounds originally synthesized by Loftus et al. (J. Phys. Chem. C 123, 10291-10299 (2019)) complemented with three additional complexes. The main focus of our work was to relate these local features to the experimental data of Loftus et al. which assess the efficiency of nitrile release in an indirect way via observed quantum yields for ruthenium water association after nitrile release. As a tool to quantitatively assess Ru-NC and Ru-L bonding we utilized the local vibrational mode analysis complemented by the topological analysis of the electron density and the natural bond orbital analysis. Interestingly, the stronger Ru-NC bonds have the greater observed quantum yields, leading to the conclusion that the observed quantum yields are a result of a complex interplay of several processes excluding a direct relationship between QY and Ru-NC or Ru-L bond strengths. We identified the ST splitting as one of the key players and not the Ru-NC bond strength, as one may have thought. In summary, this work has presented a modern computational tool set for the investigation of bonding features applied to nitrile photo-dissociating ruthenium drug candidates forming a valuable basis for future design and fine tuning of nitrile releasing ruthenium compounds, as well as for the understanding of how local properties affect overall experimental outcomes.
Collapse
Affiliation(s)
| | | | - Elfi Kraka
- Chemistry, Southern Methodist University, United States of America
| |
Collapse
|
12
|
Nahaei A, Mandegani Z, Chamyani S, Fereidoonnezhad M, Shahsavari HR, Kuznetsov NY, Nabavizadeh SM. Half-Sandwich Cyclometalated Rh III Complexes Bearing Thiolate Ligands: Biomolecular Interactions and In Vitro and In Vivo Evaluations. Inorg Chem 2022; 61:2039-2056. [PMID: 35023727 DOI: 10.1021/acs.inorgchem.1c03218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A class of cyclometalated RhIII complexes [Cp*Rh(ppy)(SR)] bearing thiolate ligands, Cp* = pentamethylcyclopentadienyl, ppy = 2-phenylpyridinate, and R = pyridyl (Spy, 2), pyrimidyl (SpyN, 3), benzimidazolyl (Sbi, 4), and benzothiazolyl (Sbt, 5), were produced and identified by means of spectroscopic methods. The in vitro cytotoxicity of the RhIII compounds in three different human mortal cancerous cell lines (ovarian, SKOV3; breast, MCF-7; lung, A549) and a normal lung (MRC-5) cell line were evaluated, indicating the selectivity of these cyclometalated RhIII complexes to cancer cells. Complex 5, selected for in vivo experiment, has shown an effective inhibition of tumor growth in SKOV3 xenograft mouse model relative to control (p-values < 0.05 and < 0.01). Importantly, the outcomes of H&E (hematoxylin and eosin) staining and hematological analysis revealed negligible toxicity of 5 compared to cisplatin on a functioning of the main organs of mouse. Molecular docking, UV-vis, and emission spectroscopies (fluorescence, 3D fluorescence, synchronous) techniques were carried out on 1-5 to peruse the mechanism of the anticancer activities of these complexes. The obtained data help to manifest the binding affinity between the rhodium compounds and calf thymus DNA (CT-DNA) through the interaction by DNA minor groove and moderate binding affinity with bovine serum albumin (BSA), particularly with the cavity in the subdomain IIA. It can be concluded that the Rh-thiolate complexes are highly promising leads for the development of novel effective DNA-targeted anticancer drugs.
Collapse
Affiliation(s)
- Asma Nahaei
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Zeinab Mandegani
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Samira Chamyani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Masood Fereidoonnezhad
- Toxicology Research Center; Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Hamid R Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Nikolai Yu Kuznetsov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation
| | - S Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| |
Collapse
|
13
|
Nolan VC, Rafols L, Harrison J, Soldevila-Barreda JJ, Crosatti M, Garton NJ, Wegrzyn M, Timms DL, Seaton CC, Sendron H, Azmanova M, Barry NP, Pitto-Barry A, Cox JA. Indole-containing arene-ruthenium complexes with broad spectrum activity against antibiotic-resistant bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100099. [PMID: 35059676 PMCID: PMC8760505 DOI: 10.1016/j.crmicr.2021.100099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
A new family of indole-containing arene ruthenium organometallic compounds are active against several bacterial species and drug resistant strains Bactericidal activity observed against various Gram negative, Gram positive and acid-fast bacteria, demonstrating broad-spectrum inhibitory activity Compound series exhibits low toxicity against human cells Shows considerable promise as next generation antibiotics
Antimicrobial resistant (AMR) bacteria are emerging and spreading globally, threatening our ability to treat common infectious diseases. The development of new classes of antibiotics able to kill or inhibit the growth of such AMR bacteria through novel mechanisms of action is therefore urgently needed. Here, a new family of indole-containing arene ruthenium organometallic compounds are screened against several bacterial species and drug resistant strains. The most active complex [(p-cym)Ru(O-cyclohexyl-1H-indole-2-carbothioate)Cl] (3) shows growth inhibition and bactericidal activity against different organisms (Acinetobacter baumannii, Mycobacterium abscessus, Mycobacterium tuberculosis, Staphylococcus aureus, Salmonella enterica serovar Typhi and Escherichia coli), demonstrating broad-spectrum inhibitory activity. Importantly, this compound series exhibits low toxicity against human cells. Owing to the novelty of the antibiotic family, their moderate cytotoxicity, and their inhibitory activity against Gram positive, Gram negative and acid-fast, antibiotic resistant microorganisms, this series shows significant promise for further development.
Collapse
|
14
|
Navale G, Singh S, Agrawal S, Ghosh C, Roy Choudhury A, Roy P, Sarkar D, Ghosh K. DNA binding, antitubercular, antibacterial and anticancer studies of newly designed piano-stool ruthenium( ii) complexes. Dalton Trans 2022; 51:16371-16382. [DOI: 10.1039/d2dt02577a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemotherapeutic potential of ruthenium(ii) complexes as DNA binding, antitubercular, antibacterial, and anticancer agents.
Collapse
Affiliation(s)
- Govinda Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sain Singh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sonia Agrawal
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Chandrachur Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| | - Dhiman Sarkar
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| |
Collapse
|
15
|
Gonzálvez MA, Bernhardt PV, Font-Bardia M, Gallen A, Jover J, Ferrer M, Martínez M. Molecular Approach to Alkali-Metal Encapsulation by a Prussian Blue Analogue Fe II/Co III Cube in Aqueous Solution: A Kineticomechanistic Exchange Study. Inorg Chem 2021; 60:18407-18422. [PMID: 34766767 PMCID: PMC8715505 DOI: 10.1021/acs.inorgchem.1c03001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The preparation of a series of alkali-metal inclusion complexes of the molecular cube [{CoIII(Me3-tacn)}4{FeII(CN)6}4]4- (Me3-tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane), a mixed-valent Prussian Blue analogue bearing bridging cyanido ligands, has been achieved by following a redox-triggered self-assembly process. The molecular cubes are extremely robust and soluble in aqueous media ranging from 5 M [H+] to 2 M [OH-]. All the complexes have been characterized by the standard mass spectometry, UV-vis, inductively coupled plasma, multinuclear NMR spectroscopy, and electrochemistry. Furthermore, X-ray diffraction analysis of the sodium and lithium salts has also been achieved, and the inclusion of moieties of the form {M-OH2}+ (M = Li, Na) is confirmed. These inclusion complexes in aqueous solution are rather inert to cation exchange and are characterized by a significant decrease in acidity of the confined water molecule due to hydrogen bonding inside the cubic cage. Exchange of the encapsulated cationic {M-OH2}+ or M+ units by other alkali metals has also been studied from a kineticomechanistic perspective at different concentrations, temperatures, ionic strengths, and pressures. In all cases, the thermal and pressure activation parameters obtained agree with a process that is dominated by differences in hydration of the cations entering and exiting the cage, although the size of the portal enabling the exchange also plays a determinant role, thus not allowing the large Cs+ cation to enter. All the exchange substitutions studied follow a thermodynamic sequence that relates with the size and polarizing capability of the different alkali cations; even so, the process can be reversed, allowing the entry of {Li-OH2}+ units upon adsorption of the cube on an anion exchange resin and subsequent washing with a Li+ solution.
Collapse
Affiliation(s)
- Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia.,Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mercè Font-Bardia
- Unitat de Difracció de Raigs, X. Centre Científic i Tecnològic,Departament de Cristal·lografia, and Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Albert Gallen
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Jesús Jover
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.,Institut de Química Teòrica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Montserrat Ferrer
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Manuel Martínez
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|