1
|
Matemb Ma Ntep TJ, Wahiduzzaman M, Laurenz E, Cornu I, Mouchaham G, Dovgaliuk I, Nandi S, Knop K, Jansen C, Nouar F, Florian P, Füldner G, Maurin G, Janiak C, Serre C. When Polymorphism in Metal-Organic Frameworks Enables Water Sorption Profile Tunability for Enhancing Heat Allocation and Water Harvesting Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211302. [PMID: 36897806 DOI: 10.1002/adma.202211302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The development of thermally driven water-sorption-based technologies relies on high-performing water vapor adsorbents. Here, polymorphism in Al-metal-organic frameworks is disclosed as a new strategy to tune the hydrophilicity of MOFs. This involves the formation of MOFs built from chains of either trans- or cis- µ-OH-connected corner-sharing AlO4(OH)2 octahedra. Specifically, [Al(OH)(muc)] or MIP-211, is made of trans, trans-muconate linkers, and cis-µ-OH-connected corner-sharing AlO4(OH)2 octahedra giving a 3D network with sinusoidal channels. The polymorph MIL-53-muc has a tiny change in the chain structure that results in a shift of the step position of the water isotherm from P/P0 ≈ 0.5 in MIL-53-muc, to P/P0 ≈ 0.3 in MIP-211. Solid-state NMR and Grand Canonical Monte Carlo reveal that the adsorption occurs initially between two hydroxyl groups of the chains, favored by the cis-positioning in MIP-211, resulting in a more hydrophilic behavior. Finally, theoretical evaluations show that MIP-211 would allow achieving a coefficient of performance for cooling (COPc) of 0.63 with an ultralow driving temperature of 60 °C, outperforming benchmark sorbents for small temperature lifts. Combined with its high stability, easy regeneration, huge water uptake capacity, green synthesis, MIP-211 is among the best adsorbents for adsorption-driven air conditioning and water harvesting from the air.
Collapse
Affiliation(s)
- Tobie J Matemb Ma Ntep
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätstraße 1, D-40225, Düsseldorf, Germany
| | | | - Eric Laurenz
- Department of Heating and Cooling Technologies, Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
| | - Ieuan Cornu
- Centre National de la Recherche Scientifique (CNRS), UPR3079 CEMHTI, Université d'Orléans, 1D Av. Recherche Scientifique, CEDEX 2, 45071, Orléans, France
| | - Georges Mouchaham
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Iurii Dovgaliuk
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Shyamapada Nandi
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Klaus Knop
- Institut für Pharmazeutische Technologie und Biopharmazie, Heinrich-Heine-Universität Düsseldorf, Universitätstraße 1, D-40225, Düsseldorf, Germany
| | - Christian Jansen
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätstraße 1, D-40225, Düsseldorf, Germany
| | - Farid Nouar
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Pierre Florian
- Centre National de la Recherche Scientifique (CNRS), UPR3079 CEMHTI, Université d'Orléans, 1D Av. Recherche Scientifique, CEDEX 2, 45071, Orléans, France
| | - Gerrit Füldner
- Department of Heating and Cooling Technologies, Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293, Montpellier, France
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätstraße 1, D-40225, Düsseldorf, Germany
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| |
Collapse
|
2
|
Gosch J, Guiotto V, Steinke F, Svensson Grape E, Atzori C, Mertin K, Otto T, Ruser N, Meier C, Morelli Venturi D, Inge AK, Lomachenko KA, Crocellà V, Stock N. Discovery and In Situ Crystallization Studies of Cerium-Based Metal-Organic Frameworks with V-Shaped Linker Molecules. Inorg Chem 2023; 62:20929-20939. [PMID: 38048322 DOI: 10.1021/acs.inorgchem.3c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
We report the discovery and characterization of two porous Ce(III)-based metal-organic frameworks (MOFs) with the V-shaped linker molecules 4,4'-sulfonyldibenzoate (SDB2-) and 4,4'-(hexafluoroisopropylidene)bis(benzoate) (hfipbb2-). The compounds of framework composition [Ce2(H2O)(SDB)3] (1) and [Ce2(hfipbb)3] (2) were obtained by using a synthetic approach in acetonitrile that we recently established. Structure determination of 1 was accomplished from 3D electron diffraction (3D ED) data, while 2 could be refined against powder X-ray diffraction (PXRD) data using the crystal structure of an isostructural La-MOF as the starting model. Their framework structures consist of chain-like inorganic building units (IBUs) or hybrid-BUs that are interconnected by the V-shaped linker molecules to form framework structures with channel-type pores. The composition of both compounds was confirmed by PXRD, elemental analysis, as well as NMR and IR spectroscopy. Interestingly, despite the use of (NH4)2[CeIV(NO3)6] in the synthesis, cerium ions in both MOFs occur exclusively in the + III oxidation state as determined by X-ray absorption near edge structure (XANES) and X-ray photoelectron spectroscopy (XPS). Thermal analyses reveal remarkably high thermal stabilities of ≥400 °C for the MOFs. Initial N2 sorption measurements revealed the peculiar sorption behavior of 2 which prompted a deeper investigation by Ar and CO2 sorption experiments. The combination with nonlocal density functional theory (NL-DFT) calculations adds to the understanding of the nature of the different pore diameters in 2. An extensive quasi-simultaneous in situ XANES/XRD investigation was carried out to unveil the formation of Ce-MOFs during the solvothermal syntheses in acetonitrile. The crystallization of the two Ce(III)-MOFs presented herein as well as two previously reported Ce(IV)-MOFs, all obtained by a similar synthetic approach, were studied. While the XRD patterns show time-dependent MOF crystallization, the XANES data reveal the presence of Ce(III) intermediates and their subsequent conversion to the MOFs. The addition of acetic acid in combination with the V-shaped linker molecule was identified as the crucial factor for the formation of the crystalline Ce(III/IV)-MOFs.
Collapse
Affiliation(s)
- Jonas Gosch
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Virginia Guiotto
- Dipartimento di Chimica, Università degli Studi di Torino, Via Gioacchino Quarello 15a, 10135 Turin, Italy
| | - Felix Steinke
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Cesare Atzori
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble Cedex 9, France
| | - Kalle Mertin
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Tobias Otto
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Niklas Ruser
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Christoph Meier
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Diletta Morelli Venturi
- Dipartimento di Chimica Biologia e Biotecnologia, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - A Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Kirill A Lomachenko
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble Cedex 9, France
| | - Valentina Crocellà
- Dipartimento di Chimica, Università degli Studi di Torino, Via Gioacchino Quarello 15a, 10135 Turin, Italy
| | - Norbert Stock
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Christian-Albrechts-Universität zu Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|