1
|
Nagelski AL, Ozerov M, Fataftah MS, Krzystek J, Greer SM, Holland PL, Telser J. Electronic Structure of Three-Coordinate Fe II and Co II β-Diketiminate Complexes. Inorg Chem 2024; 63:4511-4526. [PMID: 38408452 DOI: 10.1021/acs.inorgchem.3c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The β-diketiminate supporting group, [ArNCRCHCRNAr]-, stabilizes low coordination number complexes. Four such complexes, where R = tert-butyl, Ar = 2,6-diisopropylphenyl, are studied: (nacnactBu)ML, where M = FeII, CoII and L = Cl, CH3. These are denoted FeCl, FeCH3, CoCl, and CoCH3 and have been previously reported and structurally characterized. The two FeII complexes (S = 2) have also been previously characterized by Mössbauer spectroscopy, but only indirect assessment of the ligand-field splitting and zero-field splitting (zfs) parameters was available. Here, EPR spectroscopy is used, both conventional field-domain for the CoII complexes (with S = 3/2) and frequency-domain, far-infrared magnetic resonance spectroscopy (FIRMS) for all four complexes. The CoII complexes were also studied by magnetometry. These studies allow accurate determination of the zfs parameters. The two FeII complexes are similar with nearly axial zfs and large magnitude zfs given by D = -37 ± 1 cm-1 for both. The two CoII complexes likewise exhibit large and nearly axial zfs, but surprisingly, CoCl has positive D = +55 cm-1 while CoCH3 has negative D = -49 cm-1. Theoretical methods were used to probe the electronic structures of the four complexes, which explain the experimental spectra and the zfs parameters.
Collapse
Affiliation(s)
- Alexandra L Nagelski
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Majed S Fataftah
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Samuel M Greer
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| |
Collapse
|
2
|
Yoo J, Han J, Lim MH. Transition metal ions and neurotransmitters: coordination chemistry and implications for neurodegeneration. RSC Chem Biol 2023; 4:548-563. [PMID: 37547459 PMCID: PMC10398360 DOI: 10.1039/d3cb00052d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Neurodegeneration is characterized by a disturbance in neurotransmitter-mediated signaling pathways. Recent studies have highlighted the significant role of transition metal ions, including Cu(i/ii), Zn(ii), and Fe(ii/iii), in neurotransmission, thereby making the coordination chemistry of neurotransmitters a growing field of interest in understanding signal dysfunction. This review outlines the physiological functions of transition metal ions and neurotransmitters, with the metal-binding properties of small molecule-based neurotransmitters and neuropeptides. Additionally, we discuss the structural and conformational changes of neurotransmitters induced by redox-active metal ions, such as Cu(i/ii) and Fe(ii/iii), and briefly describe the outcomes arising from their oxidation, polymerization, and aggregation. These observations have important implications for neurodegeneration and emphasize the need for further research to develop potential therapeutic strategies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
3
|
Lüert D, Legendre CM, Herbst‐Irmer R, Stalke D. Alkali Metal Based Triimidosulfite Cages as Versatile Precursors for Single-Molecule Magnets. Chemistry 2022; 28:e202104470. [PMID: 35040528 PMCID: PMC9304269 DOI: 10.1002/chem.202104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/28/2022]
Abstract
Based on the potassium [{S(tBuN)2 (tBuNH)}2 K3 (tmeda)-K3 {(HNtBu)(NtBu)2 S}2 ] (1) and sodium precursors [S(tBuN)3 (thf)3 -Na3 SNa3 (thf)3 (NtBu)3 S] (2), [S(tBuN)3 (thf)3 Na3 {(HNtBu)(NtBu)2 S}] (3) and [(tmeda)3 S-{Na3 (NtBu)3 S}2 ] (4) the syntheses and magnetic properties of three mixed metal triimidosulfite based alkali-lanthanide-metal-cages [(tBuNH)Dy{K(0.5tmeda)}2 {(NtBu)3 S}2 ]n (5) and [ClLn{Na(thf)}2 {(NtBu)3 S}2 ] with Ln=Dy (6), Er (7) are reported. The corresponding potassium (1) and sodium (2-4) based cages are characterized through XRD and NMR experiments. Preventing lithium chloride co-complexation led to a significant increase of SMM performance to previously reported sulfur-nitrogen ligands. The subsequent DyIII -complexes 5 and 6 display slow relaxation of magnetization at zero field, with relaxation barriers U=77.0 cm-1 for 5, 512.9 and 316.3 cm-1 for 6, respectively. Significantly, the latter complex 6 also exhibits a butterfly-shaped hysteresis up to 7 K.
Collapse
Affiliation(s)
- Daniel Lüert
- Institut für Anorganische ChemieGeorg-August-University GöttingenTammannstraße 437077GöttingenGermany
| | - Christina M. Legendre
- Institut für Anorganische ChemieGeorg-August-University GöttingenTammannstraße 437077GöttingenGermany
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieGeorg-August-University GöttingenTammannstraße 437077GöttingenGermany
| | - Dietmar Stalke
- Institut für Anorganische ChemieGeorg-August-University GöttingenTammannstraße 437077GöttingenGermany
| |
Collapse
|
4
|
Sarkar M, Rajasekar P, Jose C, Boomishankar R. Polyanionic Imido-P(V) Ligands: From Transition Metal Complexes to Coordination Driven Self-Assemblies. CHEM REC 2021; 22:e202100281. [PMID: 34962082 DOI: 10.1002/tcr.202100281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/03/2021] [Indexed: 11/11/2022]
Abstract
The chemistry of the imido-anions of the main group elements has been studied for more than three decades. The imido (NR)- group is isoelectronic to the oxo (=O) group and can coordinate with metal ions through its lone pairs of electrons. The polyimido-P(V) anions are well explored as they resemble the phosphorus oxo moieties such as H3 PO4 , H2 PO4 - , HPO4 2- and PO4 3- species. These imido anions are typically generated using strong main group organometallic reagents such as n BuLi, Et2 Zn, Me3 Al and n Bu2 Mg, etc. As a result, their coordination chemistry has been restricted to reactions in anhydrous aprotic solvents for a few main group metal ions. This account presents our findings on using certain soft transition metal such Ag(I) and Pd (II) for isolating these imido-P(V) anions as their corresponding self-assembled clusters and cages. Using the various salts of Ag(I) ions in reaction with 2-pyridyl (2 Py) functionalized phosphonium salts and phosphoric triamides, we obtained the mono- and dianionic form of these imido ligands {[P(N2 Py)2 (NH2 Py)2 ]- , [P(N2 Py)2 (NH2 Py)]- , [PO(N2 Py)(NH2 Py)2 ]2- } and derived interesting examples of tri, penta, hepta and octanuclear Ag(I) clusters. Interestingly, by using the salts of Pd (II) ions, the elusive imido-phosphate trianions of the type [(RN)3 PO]3- (R=t Bu, c Hex, i Pr) were generated in a facile one pot reaction as their corresponding tri- and hexanuclear clusters of the type {Pd3 [(NR)3 PO](OAc)3 }n (n=1 or 2). These trianions acts as a cis-coordinated hexadentate ligand for a trinuclear Pd (II) cluster and serve as the polyhedral building units for constructing hitherto unknown family of neutral cages in tetrahedral {Pd3 [(Ni Pr)3 PO]4 (L)6 } and cubic {Pd3 [(Ni Pr)3 PO]8 (L)12 } structures in the presence of suitable linker ligands (L2- ). These cages show interesting host-guest chemistry and post-assembly reactions. Remarkably, by employing chiral tris(imido)phosphate trianions, enantiopure chiral cages of the type [(Pd3 X*)4 (L)6 ], ([X*]3- =RRR- or SSS-[PO(N(*CH(CH3 )Ph)3 ]3- ), were synthesized and used for the chiral-recognition and enantio-separation of small racemic guest molecules. Some of these chiral cages were also shown to exhibit polyradical framework structures. In future, these and other similar types of cages are envisioned as potential molecular vessels for performing the reactions in their confined environment. The enantiomeric cages can be probed for asymmetric catalysis and the separation of a range of small chiral molecules.
Collapse
Affiliation(s)
- Meghamala Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Prabhakaran Rajasekar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Cavya Jose
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Ramamoorthy Boomishankar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India.,Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
5
|
Jung J, Legendre CM, Demeshko S, Herbst-Irmer R, Stalke D. Imidosulfonate scorpionate ligands in lanthanide single-molecule magnet design: slow magnetic relaxation and butterfly hysteresis in [ClDy{Ph 2PCH 2S(N tBu) 3} 2]. Dalton Trans 2021; 50:17194-17201. [PMID: 34783813 DOI: 10.1039/d1dt03555j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-molecule magnets (SMMs) harbour vast opportunities for potential pioneering applications upon optimization like big data storage and quantum computing. Lanthanides were found to be highly suitable candidates in the design of such molecules, as they intrinsically hold a large unquenched orbital momentum and a strong spin-orbit coupling, warranting a high magnetic anisotropy. An indispensable element in successfully tailoring SMMs is the ligand design. Polyimido sulfur ligands offer a promising choice because the polar S+-N--bond facilitates both electronic and geometric adaptability to various f-metals. In particular, the acute N-Ln-N bite angle generates advantageous magnetic properties. The [Ph2PCH2S(NtBu)3]- anion, introduced from [(thf)3K{Ph2PCH2S(NtBu)3}] (2) to a series of complexes [ClLn{Ph2PCH2S(NtBu)3}2] with Ln = Tb (3a), Dy (3b), Er (3c), Ho (3d), and Lu (3e), provides tripodal shielding of the metal's hemisphere as well as a side-arm donation of a soft phosphorus atom. For the Tb and Er complexes 3a and 3d, slow magnetic relaxation (Ueff = 235 and 34.5 cm-1, respectively) was only observed under an applied dc field. The dysprosium congener 3b, however, is a true SMM with relaxation at zero field (Ueff = 66 cm-1) and showing a butterfly hysteresis close to 3.5 K. Upon magnetic dilution with the diamagnetic and isostructural lutetium complex 3e or application of a magnetic field, the energy barrier to spin reversal is increased to 74 cm-1.
Collapse
Affiliation(s)
- Jochen Jung
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Christina M Legendre
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Serhiy Demeshko
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Regine Herbst-Irmer
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Dietmar Stalke
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| |
Collapse
|