Tiessen N, Keßler M, Neumann B, Stammler HG, Hoge B. Oxidative Additions of C-F Bonds to the Silanide Anion [Si(C
2 F
5 )
3 ]
.
Angew Chem Int Ed Engl 2022;
61:e202116468. [PMID:
35107847 PMCID:
PMC9310575 DOI:
10.1002/anie.202116468]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 01/07/2023]
Abstract
Compounds exhibiting main group elements in low oxidation states were found to mimic the reactivity of transition metal complexes. Like the latter, such main group species show a proclivity of changing their oxidation state as well as their coordination number by +2, therefore fulfilling the requirements for oxidative additions. Prominent examples of such main group compounds that undergo oxidative additions with organohalides R-X (R=alkyl, aryl, X=F, Cl, Br, I) are carbenes and their higher congeners. Aluminyl anions, which like carbenes and silylenes oxidatively add to strong σ-bonds in R-X species, have been recently discovered. We present the first anion based upon a Group 14 element, namely the tris(pentafluoroethyl)silanide anion, [Si(C2 F5 )3 ]- , which is capable of oxidative additions towards C-F bonds. This enables the isolation of non-chelated tetraorganofluorosilicate salts, which to the best of our knowledge had only been observed as reactive intermediates before.
Collapse