1
|
Ariyarathna IR. On the ground and excited electronic states of LaCO and AcCO. Phys Chem Chem Phys 2024; 26:28337-28348. [PMID: 39495061 DOI: 10.1039/d4cp03132f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
High-level ab initio electronic structure analysis of correlated lanthanide- and actinide-based species is laborious to perform and consequently limited in the literature. In the present work, the ground and electronically excited states of LaCO and AcCO molecules were explored utilizing the multireference configuration interaction (MRCI), Davidson corrected MRCI (MRCI+Q), and coupled cluster singles doubles and perturbative triples [CCSD(T)] quantum chemical tools conjoined with correlation consistent triple-ζ and quadruple-ζ quality all-electron Douglas-Kroll (DK) basis sets. The full potential energy curves (PECs), dissociation energies (Des), excitation energies (Tes), bond lengths (res), harmonic vibrational frequencies (ωes), and chemical bonding patterns of low-lying electronic states of LaCO and AcCO are introduced. The ground electronic state of LaCO is a 4Σ- (1σ11π2) which is a product of the reaction between excited La(4F) versus CO(X1Σ+), whereas the ground state of AcCO is a 12Π (1σ21π1) deriving from ground state fragments Ac(2D) + CO(X1Σ+). The spin-orbit ground states of LaCO (14Σ-3/2) and AcCO (12Π1/2) bear ∼13 and 5 kcal mol-1D0 values, respectively. At the MRCI level, the spin-orbit curves, the spin-orbit mixing, and the Tes of spin-orbit states of LaCO and AcCO were also analyzed. Lastly, the density functional theory (DFT) calculations were performed applying 16 exchange-correlation functionals that span three rungs of "Jacob's ladder" of density functional approximations (DFAs) to assess DFT errors associated on the De and ionization energy (IE) of LaCO.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
2
|
Cox RM, Melby KM, French AD, Rodriguez MJ. f-Block reactions of metal cations with carbon dioxide studied by inductively coupled plasma tandem mass spectrometry. Phys Chem Chem Phys 2023; 26:209-218. [PMID: 38054255 DOI: 10.1039/d3cp04180h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln+ = Ce+, Pr+, Nd+-Eu+) and actinide cation (An+ = Th+, U+-Am+) oxidation reactions by CO2, was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO2, 1Σ+g) and product (CO, 1Σ+) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy (Ep) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The Ep likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln+ and An+ congener reactivity indicates that the 5f-orbitals play a small role in the An+ reactions.
Collapse
Affiliation(s)
- Richard M Cox
- Pacific Northwest National Laboratory, Richland, WA 99352 USA, USA.
| | - Kali M Melby
- Pacific Northwest National Laboratory, Richland, WA 99352 USA, USA.
| | - Amanda D French
- Pacific Northwest National Laboratory, Richland, WA 99352 USA, USA.
| | | |
Collapse
|
3
|
Andriola DM, Peterson KA. Coupled Cluster Study of the Heats of Formation of UF 6 and the Uranium Oxyhalides, UO 2X 2 (X = F, Cl, Br, I, and At). J Phys Chem A 2023; 127:7579-7585. [PMID: 37657073 DOI: 10.1021/acs.jpca.3c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The atomization enthalpies of the U(VI) species UF6 and the uranium oxyhalides UO2X2 (X = F, Cl, Br, I, and At) were calculated using a composite relativistic Feller-Peterson-Dixon (FPD) approach based on scalar relativistic DKH3-CCSD(T) with extrapolations to the CBS limit. The inherent multideterminant nature of the U atom was mitigated by utilizing the singly charged atomic cation in all calculations with correction back to the neutral asymptote via the accurate ionization energy of the U atom. The effects of SO coupling were recovered using full 4-component CCSD(T) with contributions due to the Gaunt Hamiltonian calculated using Dirac-Hartree-Fock. The final atomization enthalpy for UF6 (752.2 kcal/mol) was within 2.5 kcal/mol of the experimental value, but unfortunately the latter carries a ±2.4 kcal/mol uncertainty that is predominantly due to the experimental uncertainty in the formation enthalpy of the U atom. The analogous value for UO2F2 (607.6 kcal/mol) was in nearly exact agreement with the experiment, but the latter has a stated experimental uncertainty of ±4.3 kcal/mol. The FPD atomization enthalpy for UO2Cl2 (540.4 kcal/mol) was within the experimental error limit of ±5.5 kcal/mol. FPD atomization energies for the non-U-containing molecules (used for reaction enthalpies) H2O and HX (X = F, Cl, Br, I, and At) were within at most 0.3 kcal/mol of their experimental values where available. The FPD atomization enthalpies, together with FPD reaction enthalpies for two different reactions, were used to determine heats of formation for all species of this work, with estimated uncertainties of ±4 kcal/mol. The calculated heat of formation for UF6 (-511.0 kcal/mol) is within 2.5 kcal/mol of the accurately known (±0.45 kcal/mol) experimental value.
Collapse
Affiliation(s)
- Devon M Andriola
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| |
Collapse
|
4
|
Kafle A, Armentrout PB. Sequential Bond Dissociation Energies of Th +(CO) x, x = 3-6: Guided Ion Beam Collision-Induced Dissociation and Quantum Computational Studies. Inorg Chem 2022; 61:15936-15952. [PMID: 36166214 DOI: 10.1021/acs.inorgchem.2c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Collision-induced dissociation (CID) of [Th,xC,xO]+, x = 3-6, with Xe is performed using a guided ion beam tandem mass spectrometer (GIBMS). Products are formed exclusively by the loss of CO ligands. Analyses of the kinetic energy-dependent CID product cross sections yield bond dissociation energies (BDEs) of (CO)x-1Th+-CO at 0 K as 1.09 ± 0.05, 0.82 ± 0.07, 0.63 ± 0.05, and 0.70 ± 0.05 eV, respectively. Different structures of [Th,xC,xO]+ were explored using various electronic structure methods, and BDEs for CO ligand loss from precursor [Th,xC,xO]+ complexes were computed. Both experimental and theoretical results corroborate that the structures of [Th,xC,xO]+, x = 3-6, formed experimentally are homoleptic thorium cation carbonyl complexes, Th+(CO)x. The nonmonotonic trend in experimental BDEs is reproduced theoretically, although ambiguities in the spin states of the x = 4-6 complexes (doublet or quartet) remain. BDEs calculated at the coupled cluster with single, double, and perturbative triple excitations (CCSD(T))/cc-pVXZ//B3LYP/cc-PVXZ (X = T and Q) level and a complete basis set (CBS) extrapolation agree reasonably well with the experimental values for all complexes. Thorium oxide ketenylidene carbonyl cations, OTh+CCO(CO)y, y = 1-4, were calculated to be the most stable structures of [Th,xC,xO]+, x = 3-6, respectively; however, these are not observed in our experiment. Potential energy profiles (PEPs) having either quartet or doublet spin calculated at the B3LYP/cc-pVQZ level suggest that the failure to observe OTh+CCO(CO)y, y = 1-4, is the result of a barrier corresponding to the C-C bond formation, making the formation of OTh+CCO(CO)y inaccessible kinetically under the present experimental conditions.
Collapse
Affiliation(s)
- Arjun Kafle
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, United States
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Vasiliu M, Peterson KA, Marshall M, Zhu Z, Tufekci BA, Bowen KH, Dixon DA. Interaction of Th with H 0/-/+: Combined Experimental and Theoretical Thermodynamic Properties. J Phys Chem A 2022; 126:198-210. [PMID: 34989579 DOI: 10.1021/acs.jpca.1c07598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-level electronic structure calculations of the low-lying energy electronic states for ThH, ThH-, and ThH+ are reported and compared to experimental measurements. The inclusion of spin-orbit coupling is critical to predict the ground-state ordering as inclusion of spin-orbit switches the coupled-cluster CCSD(T) ordering of the two lowest energy states for ThH and ThH+. At the multireference spin-orbit SO-CASPT2 level, the ground states of ThH, ThH-, and ThH+ are predicted to be the 2Δ3/2, 3Φ2, and 3Δ1 states, respectively. The adiabatic electron affinity is calculated to be 0.820 eV, and the vertical detachment energy is calculated to be 0.832 eV in comparison to an experimental value of 0.87 ± 0.02 eV. The observed ThH- photoelectron spectrum has many transitions, which approximately correlate with excitations of Th+ and/or Th. The adiabatic ionization energy of ThH including spin-orbit corrections is calculated to be 6.181 eV. The natural bond orbital results are consistent with a significant contribution of the Th+H- ionic configuration to the bonding in ThH. The bond dissociation energies for ThH, ThH-, and ThH+ using the Feller-Peterson-Dixon approach were calculated to be similar for all three molecules and lie between 259 and 280 kJ/mol.
Collapse
Affiliation(s)
- Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, Unites States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, Unites States
| | - Mary Marshall
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, Unites States
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, Unites States
| | - Burak A Tufekci
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, Unites States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, Unites States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, Unites States
| |
Collapse
|
6
|
Kafle A, Armentrout PB. Experimental and computational investigation of the bond energy of thorium dicarbonyl cation and theoretical elucidation of its isomerization mechanism to the thermodynamically most stable isomer, thorium oxide ketenylidene cation, OTh +CCO. Phys Chem Chem Phys 2022; 24:842-853. [PMID: 34908066 DOI: 10.1039/d1cp04263g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Collision-induced dissociation (CID) of [Th,2C,2O]+ with Xe is performed using a guided ion beam tandem mass spectrometer (GIBMS). The only products observed are ThCO+ and Th+ by sequential loss of CO ligands. The experimental findings and theoretical calculations support that the structure of [Th,2C,2O]+ is the bent homoleptic thorium dicarbonyl cation, Th+(CO)2, having quartet spin, which is both thermodynamically and kinetically stable enough in the gas phase to be observed in our GIBMS instrument. Analysis of the kinetic energy-dependent cross sections for this CID reaction yields the first experimental determination of the bond dissociation energy (BDE) of (CO)Th+-CO at 0 K as 1.05 ± 0.09 eV. A theoretical BDE calculated at the CCSD(T) level with cc-pVXZ (X = T and Q) basis sets and a complete basis set (CBS) extrapolation is in very good agreement with the experimental result. Although the doublet spin bent thorium oxide ketenylidene cation, OTh+CCO, is calculated to be the most thermodynamically stable structure, it is not observed in our experiment where [Th,2C,2O]+ is formed by association of Th+ and CO in a direct current discharge flow tube (DC/FT) ion source. Potential energy profiles of both quartet and doublet spin are constructed to elucidate the isomerization mechanism of Th+(CO)2 to OTh+CCO. The failure to observe OTh+CCO is attributed to a barrier associated with C-C bond formation, which makes OTh+CCO kinetically inaccessible under our experimental conditions. Chemical bonding patterns in low-lying states of linear and bent Th+(CO)2 and OTh+CCO isomers are also investigated.
Collapse
Affiliation(s)
- Arjun Kafle
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT 84112, USA.
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT 84112, USA.
| |
Collapse
|