1
|
Karmakar S, Patra S, Pramanik K, Adhikary A, Dey A, Majumdar A. Reactivity of Thiolate and Hydrosulfide with a Mononuclear {FeNO} 7 Complex Featuring a Very High N-O Stretching Frequency. Inorg Chem 2024; 63:8537-8555. [PMID: 38679874 DOI: 10.1021/acs.inorgchem.3c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Synthesis, characterization, electronic structure, and redox reactions of a mononuclear {FeNO}7 complex with a very high N-O stretching frequency in solution are presented. Nitrosylation of [(LKP)Fe(DMF)]2+ (1) (LKP = tris((1-methyl-4,5-diphenyl-1H-imidazol-2-yl)methyl)amine) produced a five-coordinate {FeNO}7 complex, [(LKP)Fe(NO)]2+ (2). While complex 2 could accommodate an additional water molecule to generate a six-coordinate {FeNO}7 complex, [(LKP)Fe(NO)(H2O)]2+ (3), the coordinated H2O in 3 dissociates to generate 2 in solution. The molecular structure of 2 features a nearly linear Fe-N-O unit with an Fe-N distance of 1.744(4) Å, N-O distance of 1.162(5) Å, and
Collapse
Affiliation(s)
- Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Koushik Pramanik
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Amit Adhikary
- Department of Chemistry, Technology Campus, University of Calcutta, JD Block, Sector III, Salt Lake, Kolkata 700098, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
2
|
Floryszak-Wieczorek J, Sobieszczuk-Nowicka E, Arasimowicz-Jelonek M. Endogenous plant nitroxyl, a new component of nitric oxide biology. Trends Biochem Sci 2023; 48:748-750. [PMID: 37331830 DOI: 10.1016/j.tibs.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023]
Abstract
Nitroxyl (HNO), a one-electron reduced and protonated congener of nitric oxide (•NO), was recently discovered in Arabidopsis thaliana. Due to its distinct chemical properties, we believe HNO must be further studied to determine how many physiological processes it impacts.
Collapse
Affiliation(s)
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
3
|
Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Suarez S, Doctorovich F, Sobieszczuk-Nowicka E, Bruce King S, Milczarek G, Rębiś T, Gajewska J, Jagodzik P, Żywicki M. Discovery of endogenous nitroxyl as a new redox player in Arabidopsis thaliana. NATURE PLANTS 2023; 9:36-44. [PMID: 36564632 PMCID: PMC9873566 DOI: 10.1038/s41477-022-01301-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Nitroxyl (HNO) is the one-electron reduced and protonated congener of nitric oxide (•NO), owning a distinct chemical profile. Based on real-time detection, we demonstrate that HNO is endogenously formed in Arabidopsis. Senescence and hypoxia induce shifts in the redox balance, triggering HNO decay or formation mediated by non-enzymatic •NO/HNO interconversion with cellular reductants. The stimuli-dependent HNO generation supports or competes with •NO signalling, depending on the local redox environment.
Collapse
Affiliation(s)
| | | | - S Suarez
- Department of Plant Ecophysiology, Adam Mickiewicz University, Poznań, Poland
- Departamento de Química Inorgánica, Analítica, y Química Física, Universidad de Buenos Aires, INQUIMAE-CONICET, Buenos Aires, Argentina
| | - F Doctorovich
- Departamento de Química Inorgánica, Analítica, y Química Física, Universidad de Buenos Aires, INQUIMAE-CONICET, Buenos Aires, Argentina
| | | | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | - G Milczarek
- Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Poznan, Poland
| | - T Rębiś
- Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Poznan, Poland
| | - J Gajewska
- Department of Plant Ecophysiology, Adam Mickiewicz University, Poznań, Poland
| | - P Jagodzik
- Department of Plant Ecophysiology, Adam Mickiewicz University, Poznań, Poland
| | - M Żywicki
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
4
|
Michalski R, Smulik-Izydorczyk R, Pięta J, Rola M, Artelska A, Pierzchała K, Zielonka J, Kalyanaraman B, Sikora AB. The Chemistry of HNO: Mechanisms and Reaction Kinetics. Front Chem 2022; 10:930657. [PMID: 35864868 PMCID: PMC9294461 DOI: 10.3389/fchem.2022.930657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Azanone (HNO, also known as nitroxyl) is the protonated form of the product of one-electron reduction of nitric oxide (•NO), and an elusive electrophilic reactive nitrogen species of increasing pharmacological significance. Over the past 20 years, the interest in the biological chemistry of HNO has increased significantly due to the numerous beneficial pharmacological effects of its donors. Increased availability of various HNO donors was accompanied by great progress in the understanding of HNO chemistry and chemical biology. This review is focused on the chemistry of HNO, with emphasis on reaction kinetics and mechanisms in aqueous solutions.
Collapse
Affiliation(s)
- Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | | | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Monika Rola
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Angelika Artelska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Karolina Pierzchała
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Adam Bartłomiej Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
- *Correspondence: Adam Bartłomiej Sikora,
| |
Collapse
|
5
|
Liu Q, Ji G, Chu Y, Hao T, Qian M, Zhao Q. Enzyme-responsive hybrid prodrug of nitric oxide and hydrogen sulfide for heart failure therapy. Chem Commun (Camb) 2022; 58:7396-7399. [PMID: 35686984 DOI: 10.1039/d2cc02267b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hybrid prodrug was synthesized to realize the combined delivery of nitric oxide and hydrogen sulfide. The NO-H2S donor can release nitric oxide and hydrogen sulfide step by step in response to the endogenous enzymes β-galactosidase and carbonic anhydrase, providing potent therapeutic efficacy for heart failure post- myocardial infarction.
Collapse
Affiliation(s)
- Qi Liu
- State key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Guangbo Ji
- State key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Yushu Chu
- State key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Tian Hao
- State key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Meng Qian
- State key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Qiang Zhao
- State key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Castro Júnior JGM, Rocha WR. Theoretical investigation of [Ru(bpy) 2(HAT)] 2+ (HAT = 1,4,5,8,9,12-hexaazatriphenylene; bpy = 2,2'-bipyridine): Photophysics and reactions in excited state. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120817. [PMID: 35030417 DOI: 10.1016/j.saa.2021.120817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/01/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
In this article, Density Functional Theory based calculations, including dispersion corrections, PBE0(D3BJ)/Def2-TZVP(-f), were performed to elucidate the photophysics of the [Ru(bpy)2(HAT)]2+ complex in water. In addition, the thermodynamics of the charge and electron transfer excited state reactions of this complex with oxygen, nitric oxide and Guanosine-5'-monophosphate nucleotide (GMP) were investigated. The first singlet excite state, S1, strongly couples with the second and third triplet excited states (T2 and T3) giving rise to a high intersystem crossing rate of 6.26 × 1011 s-1 which is ∼106 greater than the fluorescence rate decay. The thermodynamics of the excited reactions revealed that all electron transfer reactions investigated are highly favorable, due mainly to the high stability of the triply charged radical cation 2PS•3+ species formed after the electron has been transferred. Excited state electron transfer from the GMP nucleotide to the complex is also highly favorable (ΔGsol = -92.6 kcal/mol), showing that this complex can be involved in the photooxidation of DNA, in line with experimental findings. Therefore, the calculations allow to conclude that the [Ru(bpy)2(HAT)]2+ complex can act in Photodynamic therapy through both mechanisms type I and II, through electron transfer from and to the complex and triplet-triplet energy transfer, generating ROS, RNOS and through DNA photooxidation. In addition, the work also opens a perspective of using this complex for the in-situ generation of the singlet nitroxyl (1NO-) species, which can have important applications for the generation of HNO and may have, therefore, important impact for physiological studies involving HNO.
Collapse
Affiliation(s)
- José Geraldo M Castro Júnior
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMo(lab), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Pampulha, Belo Horizonte, MG, Brazil
| | - Willian R Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMo(lab), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Bieza S, Mazzeo A, Pellegrino J, Doctorovich F. H 2S/Thiols, NO •, and NO -/HNO: Interactions with Iron Porphyrins. ACS OMEGA 2022; 7:1602-1611. [PMID: 35071856 PMCID: PMC8771695 DOI: 10.1021/acsomega.1c06427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 05/14/2023]
Abstract
In the past decade, gasotransmitters NO• and H2S have been thoroughly studied in biological contexts, as their biosynthesis and physiological effects became known. Moreover, an additional intricate crosstalk reaction scheme between these compounds and related species is thought to exist as part of the cascade signaling processes in physiological conditions. In this context, heme enzymes, as modeled by iron porphyrins, play a central role in catalyzing the key interconversions involved. In this work, iron porphyrin interactions with sulfide and nitric-oxide-related species are described. The stability and reactivity of mixed ternary systems are also described, and future perspectives are discussed.
Collapse
|