1
|
Liu Z, Ling JL, Liu YY, Zheng BH, Wu CD. Incorporation of enzyme-mimic species in porous materials for the construction of porous biomimetic catalysts. Chem Commun (Camb) 2024; 60:12964-12976. [PMID: 39415700 DOI: 10.1039/d4cc04223a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The unique catalytic properties of natural enzymes have inspired chemists to develop biomimetic catalyst platforms for the intention of retaining the unique functions and solving the application limitations of enzymes, such as high costs, instability and unrecyclable ability. Porous materials possess unique advantages for the construction of biomimetic catalysts, such as high surface areas, thermal stability, permanent porosity and tunability. These characteristics make them ideal porous matrices for the construction of biomimetic catalysts by immobilizing enzyme-mimic active sites inside porous materials. The developed porous biomimetic catalysts demonstrate high activity, selectivity and stability. In this feature article, we categorize and discuss the recently developed strategies for introducing enzyme-mimic active species inside porous materials, which are based on the type of employed porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), molecular sieves, porous metal silicate (PMS) materials and porous carbon materials. The advantages and limitations of these porous materials-based biomimetic catalysts are discussed, and the challenges and future directions in this field are also highlighted.
Collapse
Affiliation(s)
- Zikun Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Jia-Long Ling
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Yang-Yang Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Bu-Hang Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Chuan-De Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
2
|
Peng J, Zhong J, Liu Z, Xi H, Yan J, Xu F, Chen X, Wang X, Lv D, Li Z. Multivariate Metal-Organic Frameworks Prepared by Simultaneous Metal/Ligand Exchange for Enhanced C2-C3 Selective Recovery from Natural Gas. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41466-41475. [PMID: 37624731 DOI: 10.1021/acsami.3c06663] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Recovering light alkanes from natural gas is a critical but challenging process in petrochemical production. Herein, we propose a postmodification strategy via simultaneous metal/ligand exchange to prepare multivariate metal-organic frameworks with enhanced capacity and selectivity of ethane (C2H6) and propane (C3H8) for their recovery from natural gas with methane (CH4) as the primary component. By utilizing the Kuratowski-type secondary building unit of CFA-1 as a scaffold, namely, {Zn5(OAc)4}6+, the Zn2+ metal ions and OAc- ligands were simultaneously exchanged by other transition metal ions and halogen ligands under mild conditions. Inspiringly, this postmodification treatment can give rise to improved capacity for C2H6 and C3H8 without a noticeable increase in CH4 uptake, and consequently, it resulted in significantly enhanced selectivity toward C2H6/CH4 and C3H8/CH4. In particular, by adjusting the species and amount of the modulator, the optimal sample CFA-1-NiCl2-2.3 demonstrated the maximum capacities of C2H6 (5.00 mmol/g) and C3H8 (8.59 mmol/g), increased by 29 and 32% compared to that of CFA-1. Moreover, this compound exhibited excellent separation performance toward C2H6/CH4 and C3H8/CH4, with high uptake ratios of 6.9 and 11.9 at 298 K and 1 bar, respectively, superior to the performance of a majority of the reported MOFs. Molecular simulations were applied to unravel the improved separation mechanism of CFA-1-NiCl2-2.3 toward C2H6/CH4 and C3H8/CH4. Furthermore, remarkable thermal/chemical robustness, moderate isosteric heat, and fully reproducible breakthrough experiments were confirmed on CFA-1-NiCl2-2.3, indicating its great potential for light alkane recovery from natural gas.
Collapse
Affiliation(s)
- Junjie Peng
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Jiqin Zhong
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Zewei Liu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Hongxia Xi
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Jian Yan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Feng Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Xin Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Xun Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Daofei Lv
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
3
|
Yasmeen F, Yunus U, Bhatti MH, Sher M, Nadeem M. The development of chiral metal-organic frameworks for enantioseparation of racemates. RSC Adv 2023; 13:16651-16662. [PMID: 37274410 PMCID: PMC10236271 DOI: 10.1039/d3ra02489j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023] Open
Abstract
MIL-101(Cr), an achiral metal-organic framework, made up of a terephthalic acid ligand and a metal chromium ion was selected as a template. Its structural features are unsaturated Lewis acid sites that can be easily activated and it has an extremely high specific surface area, big pore size, and good thermal/chemical/water stability. This achiral framework was modified to introduce chirality within the structure to develop chiral metal-organic frameworks (CMOFs). Here, natural chiral ligands, amino acids (l-proline, l-thioproline and l-tyrosine), were selected for post synthetic modification (PSM) of MIL-101(Cr). This is a very simple, clean and facile methodology with respect to the reactants and reaction conditions. CMOFs 1-3 abbreviated as MIL-101-l-proline (CMOF-1), MIL-101-l-thioproline (CMOF-2) and MIL-101-l-tyrosine (CMOF-3) were prepared by introducing l-proline, l-thioproline and l-tyrosine as chiral moieties within the framework of (Cr). These CMOFs were characterized by FTIR, PXRD, SEM, and thermo gravimetric analysis. Chirality within these CMOFs 1-3 was established by circular dichroism (CD) and polarimetric methods. These three CMOFs 1-3 showed enantioselectivity towards RS-ibuprofen, RS-mandelic acid and RS-1-phenylethanol to varying extents. Their enantioselectivity towards racemates was studied by chiral HPLC and polarimetry.
Collapse
Affiliation(s)
- Farzana Yasmeen
- Department of Chemistry, Allama Iqbal Open University Islamabad Pakistan +9251-9057818 +9251-5975200
| | - Uzma Yunus
- Department of Chemistry, Allama Iqbal Open University Islamabad Pakistan +9251-9057818 +9251-5975200
| | - Moazzam H Bhatti
- Department of Chemistry, Allama Iqbal Open University Islamabad Pakistan +9251-9057818 +9251-5975200
| | - Muhammad Sher
- Department of Chemistry, Allama Iqbal Open University Islamabad Pakistan +9251-9057818 +9251-5975200
| | - Muhammad Nadeem
- Department of Chemistry, Allama Iqbal Open University Islamabad Pakistan +9251-9057818 +9251-5975200
| |
Collapse
|
4
|
Hilliard JS, Wade CR. Facile immobilization of P NN NP-Pd pincer complexes in MFU-4 l-OH and the effects of guest loading on Lewis acid catalytic activity. Dalton Trans 2023; 52:1608-1615. [PMID: 36645392 DOI: 10.1039/d2dt03781e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A palladium diphosphine pincer complex H3(PNNNP-PdI) has been encapsulated in the benzotriazolate metal-organic framework MFU-4l-OH ([Zn5(OH)4(btdd)3], btdd2- = bis(1,2,3-triazolo)dibenzodioxin), and the resulting materials were investigated as Lewis acid catalysts for cyclization of citronellal to isopulegol. Rapid catalyst immobilization is facilitated by a Brønsted acid-base reaction between the H3(PNNNP-PdI) benzoic acid substituents and Zn-OH groups at the framework nodes. Catalyst loading can be controlled up to a maximum of 0.5 pincer complexes per formula unit [PdI-x, Zn5(OH)4-nx(btdd)3(H3-nPNNNP-PdI)xx = 0.06-0.5, n ≈ 2.75]. Oxidative ligand exchange was used to replace I- with weakly coordinating BF4- anions at the Pd-I sites, generating the activated PdBF4-x catalysts (x = 0.06, 0.10, 0.18, 0.40). The Lewis acid catalytic activity of the PdBF4-x series decreases with increasing catalyst density as a result of the appearance of mass transport limitations. Initial catalytic rates show that the activity of PdBF4-0.06 approaches the intrinsic activity of a homogeneous PNNNP-PdBF4 catalyst analogue. In addition, PdBF4-0.06 exhibits better catalytic activity than the metallolinker-based MOF Zr-PdBF4 and was not subject to leaching or catalyst degradation processes observed for the homogeneous analogue.
Collapse
Affiliation(s)
- Jordon S Hilliard
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH 43210, USA.
| | - Casey R Wade
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
5
|
Liu Q, Hoefer N, Berkbigler G, Cui Z, Liu T, Co AC, McComb DW, Wade CR. Strong CO 2 Chemisorption in a Metal–Organic Framework with Proximate Zn–OH Groups. Inorg Chem 2022; 61:18710-18718. [DOI: 10.1021/acs.inorgchem.2c03212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qiao Liu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicole Hoefer
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, Ohio 43210, United States
| | - Grant Berkbigler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhihao Cui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tianyu Liu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anne C. Co
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David W. McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Casey R. Wade
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Ebadi Amooghin A, Sanaeepur H, Luque R, Garcia H, Chen B. Fluorinated metal-organic frameworks for gas separation. Chem Soc Rev 2022; 51:7427-7508. [PMID: 35920324 DOI: 10.1039/d2cs00442a] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorinated metal-organic frameworks (F-MOFs) as fast-growing porous materials have revolutionized the field of gas separation due to their tunable pore apertures, appealing chemical features, and excellent stability. A deep understanding of their structure-performance relationships is critical for the synthesis and development of new F-MOFs. This critical review has focused on several strategies for the precise design and synthesis of new F-MOFs with structures tuned for specific gas separation purposes. First, the basic principles and concepts of F-MOFs as well as their structure, synthesis and modification and their structure to property relationships are studied. Then, applications of F-MOFs in adsorption and membrane gas separation are discussed. A detailed account of the design and capabilities of F-MOFs for the adsorption of various gases and the governing principles is provided. In addition, the exceptional characteristics of highly stable F-MOFs with engineered pore size and tuned structures are put into perspective to fabricate selective membranes for gas separation. Systematic analysis of the position of F-MOFs in gas separation revealed that F-MOFs are benchmark materials in most of the challenging gas separations. The outlook and future directions of the science and engineering of F-MOFs and their challenges are highlighted to tackle the issues of overcoming the trade-off between capacity/permeability and selectivity for a serious move towards industrialization.
Collapse
Affiliation(s)
- Abtin Ebadi Amooghin
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain. .,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russian Federation
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA.
| |
Collapse
|