1
|
Cui Y, Lu H, Hou H, Bai Y, Yang J, Li Y, Qiu J, Wang S, Lin J. Dissolution-Recrystallization: A Novel Mechanism for Fluorochromic Detection of Th 4+ Using Color-Tunable Luminescent Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202410453. [PMID: 39037423 DOI: 10.1002/anie.202410453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Thorium, a predominant actinide in the Earth's crust, presents significant environmental and health risks due to its radioactive nature. These risks are particularly pronounced during the mining and processing of monazite for rare earth elements (REEs), which contain substantial thorium concentrations. Current instrumental analysis methods for thorium, offer high accuracy but require laborious sample preparations and expensive instruments, making them unsuitable for on-site analysis. Herein, we present a class of color-tunable luminescent lanthanide-based metal-organic frameworks (Ln-MOFs) as fluorochromic sensors for Th4+ cations. Utilizing a heterobimetallic Eu3+/Tb3+ doping strategy, the luminescence colors of EuxTb1-x-BDC-OH can be finely tuned from red, to orange, and to green. More intriguingly, the higher Lewis acidity of Th4+ facilitates the transformation of EuxTb1-x-BDC-OH into a UiO-type Th-MOF via a dissolution-recrystallization mechanism. This process results in a gradual reduction of characteristic Ln3+ emissions and the emergence of blue color ligand-based fluorescence, thereby leading to selective fluorochromic responses with increasing Th4+ concentrations and enabling visible detection of Th4+ cations. Additionally, a custom-built portable optoelectronic device is fabricated, which directly converts luminescence colors into red-green-blue (RGB) values. This device enables easy quantification of Th4+ concentrations without the need for complex instrumentation.
Collapse
Affiliation(s)
- Yunyi Cui
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P.R. China
| | - Huiliang Hou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P.R. China
| | - Yaoyao Bai
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Junpu Yang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yarui Li
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jie Qiu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shuao Wang
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215323, P.R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Khorshidi G, Notash B. Solvent and additive-controlled supramolecular isomerism in zinc coordination polymers. Sci Rep 2024; 14:27586. [PMID: 39528602 PMCID: PMC11554826 DOI: 10.1038/s41598-024-77298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
A new series of Zn(II) supramolecular isomers containing ditopic 1,3-di(pyridin-4-yl)urea (4bpu) ligand were synthesized and characterized by infrared analysis, elemental analysis and TGA as well as single-crystal X-ray diffraction analysis. Four solvent-induced pseudopolymorphic zinc (II) coordination polymers (CPs), namely, {[Zn(4bpu)(OAc)2](CH3OH)}n (1), {[Zn(4bpu)(OAc)2](C2H5OH)}n (2), {[Zn(4bpu)(OAc)2](HOCH2CH2OH)}n (3), and {[Zn(4bpu)(OAc)2](0.5H2O)}n (4), were prepared by the reaction of Zn(OAc)2.2H2O and 4bpu via self-assembly under varying solvent systems. Also, a pair of polymorphic coordination polymers namely, {[Zn(4bpu)(OAc)2](CH3OH)}n (1α) and {[Zn3(4bpu)3(OAc)6](CH3OH)2}n(1β), was prepared in the presence of different organic additives. Single-crystal X-ray diffraction confirmed that 1-4 and 1α display 1D polymeric zig-zag chains and 1β exhibits 1D triple-stranded ladders that were self-assembled through various supramolecular interactions. In addition, a series of dissolution-recrystallization structural transformations (DRST) were performed on these supramolecular isomers.
Collapse
Affiliation(s)
- Ghazale Khorshidi
- Department of Inorganic Chemistry, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Behrouz Notash
- Department of Inorganic Chemistry, Shahid Beheshti University, Tehran, 1983969411, Iran.
| |
Collapse
|
3
|
Teng G, Chen C, Ma X, Mao H, Yuan X, Xu H, Wu Z, Zhang J. Spherical Assembly of Halloysite Clay Nanotubes as a General Reservoir of Hydrophobic Pesticides for pH-Responsive Management of Pests and Weeds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402921. [PMID: 38822715 DOI: 10.1002/smll.202402921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Indexed: 06/03/2024]
Abstract
The development of smart systems for pesticidal delivery presents a significant advancement in enhancing the utilization efficiency of pesticides and mitigating environmental risks. Here an acid-responsive pesticidal delivery system using microspheres formed by the self-assembly of halloysite clay nanotubes (HNTs) is proposed. Insecticide avermectin (AVM) and herbicide prometryn (PMT) are used as two models of hydrophobic pesticide and encapsulated within the porous microspheres, followed by a coating of tannic acid/iron (TA/FeIII) complex films to generate two controlled-release pesticides, named as HCEAT and HCEPT, resulting in the loading capacity of AVM and PMT being 113.3 and 120.3 mg g-1, respectively. Both HCEAT and HCEPT exhibit responsiveness to weak acid, achieving 24 h-release ratios of 85.8% and 80.5% at a pH of 5.5. The experiment and simulation results indicate that the coordination interaction between EDTA2- and Ca2+ facilitates the spherical aggregation of HNTs. Furthermore, these novel pesticide formulations demonstrate better resistance against ultraviolet (UV) irradiation, higher foliar affinity, and less leaching effect, with negligible impact of the carrier material on plants and terrestrial organisms. This work presents a promising approach toward the development of efficient and eco-friendly pesticide formulations, greatly contributing to the sustainable advancement of agriculture.
Collapse
Affiliation(s)
- Guopeng Teng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Chaowen Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Xueqi Ma
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Hengjian Mao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230026, China
| | - Xue Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Huan Xu
- School of Carbon Neutrality Science and Engineering, Anhui University of Science and Technology, Hefei, Anhui, 231131, China
| | - Zhengyan Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Jia Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| |
Collapse
|
4
|
Dai H, Zhang Y, Jin X, Yang W, Luo Y, Yang K, Fu Y, Xu W. Reaction Time Induced a Two-Step Dissolution and Recrystallization Structural Transformation with Three Eu Metal-Organic Frameworks: Crystal Structures and Multiresponsive Fluorescence Detection. Inorg Chem 2024; 63:18058-18072. [PMID: 39287663 DOI: 10.1021/acs.inorgchem.4c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Under solvothermal conditions, three 3D lanthanide metal-organic frameworks (Ln-MOFs): [Eu(H2DHTA)1.5(DMF)2]·DMF (1), [Eu(H2DHTA)0.5(DHTA)0.5(DMF)(H2O)]·2H2O (2), and Eu(HCOO)3 (3) (H4DHTA = 2,5-dihydroxyterephthalic acid) have been synthesized by different reaction times. Interestingly, induced by reaction time, compounds 1-3 underwent a two-step dissolution and recrystallization structural transformation (DRST) reaction. Investigations on the DRST processes were carried out, and the transformation pathway was deduced, which was verified by XRD analyses. Notably, compound 2 demonstrates pronounced luminescence as well as high stability in water and other organic solvents. The fluorescent detection of furan antibiotics can serve as turn-off effects, and glutamic acid (Glu), aspartic acid (Asp), and riboflavin (VB2) can serve as the turn-on effect. To explain the enhancing and quenching mechanisms, XRD, UV-visible absorption spectroscopy, electrochemistry, IR spectra, theoretical calculation, fluorescence lifetimes, and XPS were discussed. Additionally, MOF-coated test strips were utilized to detect these analytes, exhibiting excellent agreement with fluorescence spectroscopy. This work provides an example for more effective designs to employ Ln-MOFs as multiresponsive fluorescent sensors for detection of environmental pollutants in aqueous solution.
Collapse
Affiliation(s)
- Huan Dai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Department of Pharmaceutical Engineering and Biotechnology, Zhejiang Pharmaceutical University, Ningbo 315199, China
| | - Ya Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xiaoping Jin
- Department of Pharmaceutical Engineering and Biotechnology, Zhejiang Pharmaceutical University, Ningbo 315199, China
| | - Wensu Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Department of Pharmaceutical Engineering and Biotechnology, Zhejiang Pharmaceutical University, Ningbo 315199, China
| | - Yunjie Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ke Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yu Fu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Ebrahimi B, Notash B, Matar T, Dinnebier R. In Situ Conversion of Ligand to a Coordination Polymer via a Core@Shell Crystal: A Multi-Step Phase-Dependent Structural Transformation. Inorg Chem 2024; 63:983-999. [PMID: 38157417 DOI: 10.1021/acs.inorgchem.3c03044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Two pseudopolymorphic 1D coordination polymers of the formulas [Cd(3,3'-pytz)(CH3OH)2(ClO4)2]n (1) and [Cd(3,3'-pytz)(CH3CN)2(ClO4)2]n (2) have been prepared using the electron-deficient 3,6-bis(pyridin-3-yl)-1,2,4,5-tetrazine (3,3'-pytz) ligand and cadmium perchlorate in the chloroform/methanol and chloroform/acetonitrile solvent system, respectively. It was observed that compounds 1 and 2 experienced one-step (CPreagent → CPproduct) single-crystal-to-powder structural transformation to the pure water-coordinated compound [Cd(3,3'-pytz)(H2O)2(ClO4)2]n (3) by absorbing water vapor from air (solid-gas phase transformation). Interestingly, compounds 1, 2, and 3 undergo a different transformation path and show an in situ unique three-step (CPreagent → CPproduct → Ligandintermediate → CPproduct) single-crystal-to-single-crystal (SCSC) structural transformation process through soaking in deionized water (solid-liquid phase transformation). In this fascinating transformation, we report for the first time the direct conversion of a ligand into a coordination polymer by a rare core-shell pathway in a solid-liquid phase transformation. In this process, we obtained compound {[Cd(3,3'-pytz)(H2O)4](3,3'-pytz)2(ClO4)2(H2O)6}n (4) (single-crystal = S, crystal = C, or microcrystal = P) as mixed compounds of core-shell L@4C and 4S or core-shell L@4P and 4P for compounds (1 and 2) and 3, respectively.
Collapse
Affiliation(s)
- Bahare Ebrahimi
- Department of Inorganic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Behrouz Notash
- Department of Inorganic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Toka Matar
- Max Planck Institute for Solid State Research, Heisenberg strasse 1, D-70569 Stuttgart, Germany
| | - Robert Dinnebier
- Max Planck Institute for Solid State Research, Heisenberg strasse 1, D-70569 Stuttgart, Germany
| |
Collapse
|
6
|
Notash B, Farhadi Rodbari M, Kubicki M. Water Content-Controlled Formation and Transformation of Concomitant Pseudopolymorph Coordination Polymers. ACS OMEGA 2023; 8:13140-13152. [PMID: 37065012 PMCID: PMC10099119 DOI: 10.1021/acsomega.3c00405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Two concomitant pseudopolymorph coordination polymers {[Cd2L2(OAc)4]·2DMSO} n (1) and {[CdL(OAc)2]·2.75H2O} n (2) were synthesized by self-assembly of 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene (L) and cadmium acetate in DMSO. Single-crystal X-ray diffraction confirmed that 1D ladder structural motifs exist for pseudopolymorphs 1 and 2 which contain DMSO and water guest molecules, respectively. Our study illustrated the active role of solvent water content in obtaining compound 2. We find that the presence of water as an impurity in the DMSO solvent creates the possibility of formation of concomitant pseudopolymorph coordination polymers which is a unique event. Furthermore, our analyses showed the effect of environmental humidity on the transformation of unstable compound 1. 1D ladder pseudopolymorphic compound 1 could be transformed to guest-free 1D linear compound [CdL(OAc)2(H2O)] n (3') (the powder form of single crystals of 3) through a scarce case of water absorption from air. Also, the crystalline material of coordination polymer 3 was transformed to coordination polymer 2 through the dissolution-recrystallization structural transformation process in DMF or DMSO. Our study clarified that the amount of water in the reaction container can control the formation of one of the compounds 2 or 3. In the presence of a significant amount of water, compound 3 (coordinated water) will be produced, whereas if a small amount of water is present, compound 2 (uncoordinated water) is prepared as an exclusive product.
Collapse
Affiliation(s)
- Behrouz Notash
- Department
of Inorganic Chemistry, Shahid Beheshti
University, 1983969411 Tehran, Iran
| | - Mona Farhadi Rodbari
- Department
of Inorganic Chemistry, Shahid Beheshti
University, 1983969411 Tehran, Iran
| | - Maciej Kubicki
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznanskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
7
|
Ejarque D, Calvet T, Font-Bardia M, Pons J. Amide-Driven Secondary Building Unit Structural Transformations between Zn(II) Coordination Polymers. CRYSTAL GROWTH & DESIGN 2022; 22:5012-5026. [PMID: 35971411 PMCID: PMC9374304 DOI: 10.1021/acs.cgd.2c00520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Indexed: 05/25/2023]
Abstract
The behavior of coordination polymers (CPs) against external stimuli has witnessed remarkable attention, especially when the resulting CPs present reversible molecular arrays. Accordingly, CPs with these characteristics can lead to differences in their properties owing to these structural differences, being promising for their use as potential molecular switches with diverse applications. Herein, we have synthesized four Zn(II) CPs bearing α-acetamidocinnamic acid (HACA) and 4,4'-bipyridine (4,4'-bipy). The reaction between Zn(OAc)2·2H2O, HACA, and 4,4'-bipy yields {[Zn(ACA)2(4,4'-bipy)]·EtOH} n (1), which was used for the formation of three CPs through dissolution-recrystallization structural transformations (DRSTs): {[Zn(ACA)2(4,4'-bipy)]·2MeOH} n (2), {[Zn2(μ-ACA)2(ACA)2(4,4'-bipy)]·2H2O} n (3), and {[Zn3(μ-ACA)6(4,4'-bipy)]·0.75CHCl3} n (4). The study of the four crystal structures revealed that their secondary building units (SBUs) comprise monomeric, dimeric, and trimeric arrangements linked by 4,4'-bipy ligands. The fundamental role of the utilized solvent and/or temperature, as well as their effect on the orientation of the amide moieties driving the formation of the different SBUs is discussed. Furthermore, the reversibility and interconversion between the four CPs have been assayed. Finally, their solid-state photoluminescence has evinced that the effect of the amide moieties not only predetermine a different SBU but also lead to a different emission in 4 compared with 1-3.
Collapse
Affiliation(s)
- Daniel Ejarque
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Teresa Calvet
- Departament
de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat
de Difracció de Raig-X, Centres Científics i Tecnològics
de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain
| | - Josefina Pons
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
8
|
Tunsrichon S, Youngme S, Boonmak J. Ligand-Driven Self-Assembly of Iodine-Based Cd(II) Complexes via Dissolution-Recrystallization Structural Transformation. CrystEngComm 2022. [DOI: 10.1039/d2ce00395c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The iodo-cadmium(II) complexes with a diversity of crystalline architectures have been prepared via a combination of a Cd(II) precursor and varied iodine solutions. The iodo-Cd(II) complexes with 1,10-phenantroline were assembled...
Collapse
|