1
|
Rotundo L, Ahmad S, Cappuccino C, Pearce AJ, Nedzbala H, Bottum SR, Mayer JM, Cahoon JF, Grills DC, Ertem MZ, Manbeck GF. Fast Catalysis at Low Overpotential: Designing Efficient Dicationic Re(bpy 2+)(CO) 3I Electrocatalysts for CO 2 Reduction. J Am Chem Soc 2024; 146:24742-24747. [PMID: 39190866 DOI: 10.1021/jacs.4c08084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We report a series of isomeric, dicationic Re(bpy2+)(CO)3I complexes with bpy (2,2'-bipyridine) modified by two phenyl-CH2-(NMe3)+ pendants with cations located at variable distances from the active site for electrocatalytic CO2 reduction in CH3CN/2.8 M H2O. The position of the cationic groups dramatically increases the rate of catalysis by ∼800-fold, from 1.2 to 950 s-1, with only a minor increase in overpotential. Acceleration is due to stabilization of the initial CO2 adduct and lowering of ΔG‡ for C-OH bond cleavage by Coulombic stabilization of anionic charges. Performance may be enhanced by accumulation in the electrochemical double layer. Transition state stabilization in the optimized isomer unlocks the low overpotential "protonation-first" pathway, highlighting the sizable effects of subtle structural optimization.
Collapse
Affiliation(s)
- Laura Rotundo
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Shahbaz Ahmad
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Chiara Cappuccino
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Adam J Pearce
- The Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hannah Nedzbala
- The Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Samuel R Bottum
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James M Mayer
- The Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - James F Cahoon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David C Grills
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Mehmed Z Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Gerald F Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
2
|
King RP, Yang JY. Modular preparation of cationic bipyridines and azaarenes via C-H activation. Chem Sci 2023; 14:13530-13536. [PMID: 38033896 PMCID: PMC10686024 DOI: 10.1039/d3sc04864k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Bipyridines are ubiquitous in organic and inorganic chemistry because of their redox and photochemical properties and their utility as ligands to transition metals. Cationic substituents on bipyridines and azaarenes are valuable as powerful electron-withdrawing functionalities that also enhance solubility in polar solvents, but there are no general methods for direct functionalization. A versatile method for the preparation of trimethylammonium- and triarylphosphonium-substituted bipyridines and azaheterocycles is disclosed. This methodology showcases a C-H activation of pyridine N-oxides that enables a highly modular and scalable synthesis of a diverse array of cationically charged azaarenes. The addition of trimethylammonium functionalities on bipyridine derivatives resulted in more anodic reduction potentials (up to 700 mV) and increased electrochemical reversibility compared to the neutral unfunctionalized bipyridine. Additonally, metallation of 4-triphenylphosphinated biquinoline to make the corresponding Re(CO)3Cl complex resulted in reduction potentials 400 mV more anodic than the neutral derivative.
Collapse
Affiliation(s)
- Ryan P King
- Department of Chemistry, University of California, Irvine Irvine CA 92697 USA
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine Irvine CA 92697 USA
| |
Collapse
|
3
|
Deetz AM, Goodwin MJ, Kober EA, Meyer GJ. Nanosecond Intra-Ionic Chloride Photo-Oxidation. Inorg Chem 2023; 62:11414-11425. [PMID: 37428627 DOI: 10.1021/acs.inorgchem.3c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Transition-metal photocatalysts capable of oxidizing chloride are rare yet serve as an attractive means to controllably generate chlorine atoms, which have continued to garner the interest of researchers for notable applications in photoredox catalysis and solar energy storage. Herein, a new series of four Ir-photocatalysts with different dicationic chloride-sequestering ligands were synthesized and characterized to probe the relationship between chloride binding affinities, ion pair solution structures, and rate constants for chloride photo-oxidation in acetonitrile at room temperature. The substituents on the quaternary amines of dicationic bipyridine ligands had negligible effects on the photocatalyst excited-state reduction potential, yet dramatically influenced the affinity for chloride binding, indicating that synthetic design can be utilized to independently tune these important properties. An inverse correlation was observed between the equilibrium constant for chloride ion pairing and the rate constant for intra-ionic chloride oxidation. Exceptions to this trend suggest structural differences in the ion-paired solution structures, which were probed by 1H NMR binding experiments. This study provides new insights into light-induced oxidation of ion-paired substrates, a burgeoning approach that offers to circumvent diffusional constraints of photocatalysts with short excited-state lifetimes. Ground-state association of chloride with these photocatalysts enables intra-ionic chloride oxidation on a rapid nanosecond timescale.
Collapse
Affiliation(s)
- Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erin A Kober
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Hayton TW, Shafaat HS. Periodic TableTalks: An Oasis of Science within a Conference Desert. Inorg Chem 2022; 61:5965-5971. [PMID: 35465679 PMCID: PMC11717434 DOI: 10.1021/acs.inorgchem.2c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Deetz A, Meyer GJ. Resolving Halide Ion Stabilization through Kinetically Competitive Electron Transfers. JACS AU 2022; 2:985-995. [PMID: 35557754 PMCID: PMC9088780 DOI: 10.1021/jacsau.2c00088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Stabilization of ions and radicals often determines reaction kinetics and thermodynamics, but experimental determination of the stabilization magnitude remains difficult, especially when the species is short-lived. Herein, a competitive kinetic approach to quantify the stabilization of a halide ion toward oxidation imparted by specific stabilizing groups relative to a solvated halide ion is reported. This approach provides the increase in the formal reduction potential, ΔE°'(Χ•/-), where X = Br and I, that results from the noncovalent interaction with stabilizing groups. The [Ir(dF-(CF3)-ppy)2(tmam)]3+ photocatalyst features a dicationic ligand tmam [4,4'-bis[(trimethylamino)methyl]-2,2'-bipyridine]2+ that is shown by 1H NMR spectroscopy to associate a single halide ion, K eq = 7 × 104 M-1 (Br-) and K eq = 1 × 104 M-1 (I-). Light excitation of the photocatalyst in halide-containing acetonitrile solutions results in competitive quenching by the stabilized halide and the more easily oxidized diffusing halide ion. Marcus theory is used to relate the rate constants to the electron-transfer driving forces for oxidation of the stabilized and unstabilized halide, the difference of which provides the increase in reduction potentials of ΔE°'(Br•/-) = 150 ± 24 meV and ΔE°'(I•/-) = 67 ± 13 meV. The data reveal that K eq is a poor indicator of these reduction potential shifts. Furthermore, the historic and widely used assumption that Coulombic interactions alone are responsible for stabilization must be reconsidered, at least for polarizable halogens.
Collapse
|
6
|
McFadden TP, Nwachukwu CI, Roberts AG. An amine template strategy to construct successive C-C bonds: synthesis of benzo[ h]quinolines by a deaminative ring contraction cascade. Org Biomol Chem 2022; 20:1379-1385. [PMID: 35084425 PMCID: PMC8957836 DOI: 10.1039/d1ob02245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a convergent strategy to build, cyclize and excise nitrogen from tertiary amines for the synthesis of polyheterocyclic aromatics. Biaryl-linked azepine intermediates can undergo a deaminative ring contraction cascade reaction, excising nitrogen with the formation of an aromatic core. This strategy and deaminative ring contraction reaction are useful for the synthesis of benzo[h]quinolines.
Collapse
Affiliation(s)
- Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA.
| | | | - Andrew George Roberts
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
7
|
Carr CR, Koenig JDB, Grant MJ, Piers WE, Welch GC. Boosting CO 2-to-CO evolution using a bimetallic diketopyrrolopyrrole tethered rhenium bipyridine catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01453j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of homogeneous electro- and photo-catalysis involving molecular catalysts offers valuable insight into reaction mechanisms as it relates to the structure–function of these tunable systems.
Collapse
Affiliation(s)
- Cody R. Carr
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Josh D. B. Koenig
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Michael J. Grant
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Warren E. Piers
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Gregory C. Welch
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
8
|
Koenig JDB, Piers WE, Welch GC. Promoting photocatalytic CO2 reduction through facile electronic modification of N-annulated perylene diimide rhenium bipyridine dyads. Chem Sci 2022; 13:1049-1059. [PMID: 35211271 PMCID: PMC8790914 DOI: 10.1039/d1sc05465a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
The development of CO2 conversion catalysts has become paramount in the effort to close the carbon loop. Herein, we report the synthesis, characterization, and photocatalytic CO2 reduction performance for a series of N-annulated perylene diimide (NPDI) tethered Re(bpy) supramolecular dyads [Re(bpy-C2-NPDI-R)], where R = –H, –Br, –CN, –NO2, –OPh, –NH2, or pyrrolidine (–NR2). The optoelectronic properties of these Re(bpy-C2-NPDI-R) dyads were heavily influenced by the nature of the R-group, resulting in significant differences in photocatalytic CO2 reduction performance. Although some R-groups (i.e. –Br and –OPh) did not influence the performance of CO2 photocatalysis (relative to –H; TONco ∼60), the use of an electron-withdrawing –CN was found to completely deactivate the catalyst (TONco < 1) while the use of an electron-donating –NH2 improved CO2 photocatalysis four-fold (TONco = 234). Despite being the strongest EWG, the –NO2 derivative exhibited good photocatalytic CO2 reduction abilities (TONco = 137). Using a combination of CV and UV-vis-nIR SEC, it was elucidated that the –NO2 derivative undergoes an in situ transformation to –NH2 under reducing conditions, thereby generating a more active catalyst that would account for the unexpected activity. A photocatalytic CO2 mechanism was proposed for these Re(bpy-C2-NPDI-R) dyads (based on molecular orbital descriptions), where it is rationalized that the photoexcitation pathway, as well as the electronic driving-force for NPDI2− to Re(bpy) electron-transfer both significantly influence photocatalytic CO2 reduction. These results help provide rational design principles for the future development of related supramolecular dyads. Seven N-annulated perylene diimide tethered rhenium (2,2′-bipyridine) supramolecular dyads are evaluated as photocatalysts for the reduction for carbon dioxide, highlighting the importance of photoexcitation pathway and electronic driving-force.![]()
Collapse
Affiliation(s)
- Josh D. B. Koenig
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Warren E. Piers
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Gregory C. Welch
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|