1
|
Sun Y, Xiao L, Wu W. In Situ Carbon-Confined MoSe 2 Catalyst with Heterojunction for Highly Selective CO 2 Hydrogenation to Methanol. Molecules 2024; 29:2186. [PMID: 38792048 PMCID: PMC11123706 DOI: 10.3390/molecules29102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The synthesis of methanol from CO2 hydrogenation is an effective measure to deal with global climate change and an important route for the chemical fixation of CO2. In this work, carbon-confined MoSe2 (MoSe2@C) catalysts were prepared by in situ pyrolysis using glucose as a carbon source. The physico-chemical properties and catalytic performance of CO2 hydrogenation to yield methanol were compared with MoSe2 and MoSe2/C. The results of the structure characterization showed MoSe2 displayed few layers and a small particle size. Owing to the synergistic effect of the Mo2C-MoSe2 heterojunction and in situ carbon doping, MoSe2@C with a suitable C/Mo mole ratio in the precursor showed excellent catalytic performance in the synthesis of methanol from CO2 hydrogenation. Under the optimal catalyst MoSe2@C-55, the selectivity of methanol reached 93.7% at a 9.7% conversion of CO2 under optimized reaction conditions, and its catalytic performance was maintained without deactivation during a continuous reaction of 100 h. In situ diffuse infrared Fourier transform spectroscopy studies suggested that formate and CO were the key intermediates in CO2 hydrogenation to methanol.
Collapse
Affiliation(s)
| | - Linfei Xiao
- National Center for International Research on Catalytic Technology, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China;
| | - Wei Wu
- National Center for International Research on Catalytic Technology, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China;
| |
Collapse
|
2
|
Xing F, Wang C, Liu S, Jin S, Jin H, Li J. Interfacial Chemical Bond Engineering in a Direct Z-Scheme g-C 3N 4/MoS 2 Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11731-11740. [PMID: 36821726 DOI: 10.1021/acsami.2c21046] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The Z-scheme heterojunction shows great potential in photocatalysis due to its superior carrier separation efficiency and strong photoredox properties. However, how to regulate the charge separation at the nanometric interface of heterostructures still remains a challenge. Here, we take g-C3N4 and MoS2 as models and design the Mo-N chemical bond, which connects exactly the CB of MoS2 and VB of g-C3N4. Thus, the Mo-N bond could act as an atomic-level interfacial "bridge" that provides a direct migration path of charge carriers between g-C3N4 and MoS2. Experiments confirmed that the Mo-N bond and the internal electric field promote greatly the photogenerated carrier separation. The optimized photocatalyst exhibits a high hydrogen evolution rate that is about 19.6 times that of the pristine bulk C3N4. This study demonstrates the key role of an atomic-level interfacial chemical bond design in heterojunctions and provides a new idea for the design of efficient catalytic heterojunctions.
Collapse
Affiliation(s)
- Fangyuan Xing
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chengzhi Wang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shiqiao Liu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shaohua Jin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haibo Jin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jingbo Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Cheng Z, Pan H, Wu Z, Wübbenhorst M, Zhang Z. Cu-Mo Bimetal Modulated Multifunctional Carbon Nanofibers Promoting the Polysulfides Conversion for High-Sulfur-Loading Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45688-45696. [PMID: 36191265 DOI: 10.1021/acsami.2c13012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High sulfur loading is essential for achieving high energy density lithium-sulfur (Li-S) batteries. However, serious issues such as low sulfur utilization, poor cycling stability, and sluggish rate performance have been exposed when increasing the sulfur loading for freestanding cathodes. To solve these problems, the adsorption/catalytic ability of high-sulfur-loading cathode toward polysulfides must be improved. Herein, based on excellent properties of cationic MOFs, we proposed that Cu-Mo bimetallic nanoparticles embedded in multifunctional freestanding nitrogen-doped porous carbon nanofibers (Cu-Mo@NPCN) with efficient catalytic sites could be prepared by facile MoO42- anion exchange of cationic MOFs. And, the sulfur embedded in Cu-Mo@NPCN was directly used as self-supporting electrodes, enabling a high areal capacity, good rate performance, and decent cycling stability even under high sulfur loading. The freestanding Cu-Mo@NPCN/10.3S cathode achieves a high volumetric capacity of 1163 mA h cm-3 and a decent areal capacity of 9.3 mA h cm-2 at 0.2 C with a sulfur loading of 10.3 mg cm-2. This work provides an innovative approach for engineering a freestanding sulfur cathode and would forward the development of cationic MOF-derived bimetallic catalysts in various energy storage systems.
Collapse
Affiliation(s)
- Zhibin Cheng
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Hui Pan
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Leuven 3001, Belgium
| | - Ziyuan Wu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Michael Wübbenhorst
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Leuven 3001, Belgium
| | - Zhangjing Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| |
Collapse
|
4
|
Zhang L, Shen S, Zhang J, Lin Z, Wang Z, Zhang Q, Zhong W, Zhu L, Wu G. Interlayer Spacing Regulation of Molybdenum Selenide Promotes Electrocatalytic Hydrogen Evolution in Alkaline Media. SMALL METHODS 2022; 6:e2200900. [PMID: 36002335 DOI: 10.1002/smtd.202200900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
The construction of heterostructures is a versatile tactic to enhance catalytic activity. However, it is still elusive to realize the modulation of the interlayer spacing in this way to further improve the performance. Here, strong interfacial coupling between CoSe2 and MoSe2 by constructing CoSe2 /MoSe2 heterostructures is achieved. The interlayer spacing of MoSe2 is compressed by 0.3 Å. The enhanced charge transfer is validated by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. Coupled with the morphology of hollow microtubes, which can facilitate the exposure of active sites, CoSe2 /MoSe2 heterostructures reported here exhibit high activity (119 mV at 10 mA cm-2 ) and excellent stability with small degradation after 50 h operation, surpassing other analogous powdered electrocatalysts. This work sheds light on the importance of tuning the interlayer spacing to improve electrocatalytic activity.
Collapse
Affiliation(s)
- LiLi Zhang
- College of Material Science and Engineering, Changchun University of Technology, Changchun, Jilin, 130051, China
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Shijie Shen
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Jitang Zhang
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Zhiping Lin
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Zongpeng Wang
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Qinghua Zhang
- Institution of Physics, Chinese Academic of Science, Zhongguancun, Haidian District, 100190, China
| | - Wenwu Zhong
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Liu Zhu
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Guangfeng Wu
- College of Material Science and Engineering, Changchun University of Technology, Changchun, Jilin, 130051, China
| |
Collapse
|
5
|
Murthy R, Neelakantan SC. Graphitic Carbon Cloth-Based Hybrid Molecular Catalyst: A Non-conventional, Synthetic Strategy of the Drop Casting Method for a Stable and Bifunctional Electrocatalyst for Enhanced Hydrogen and Oxygen Evolution Reactions. ACS OMEGA 2022; 7:32604-32614. [PMID: 36120071 PMCID: PMC9476522 DOI: 10.1021/acsomega.2c04199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen energy production through water electrolysis is envisaged as one of the most promising, sustainable, and viable alternate sources to cater to the incessant demands of renewable energy storage. Germane to our effort in this field, we report easily synthesizable and very cost-effective isoperthiocyanic acid (IPA) molecular complexes as electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under acidic and alkaline conditions. The Pd(II)IPA, Co(II)IPA, and Ni(II)IPA complexes were synthesized and were evaluated for HER and OER applications. These complexes when embedded onto graphitized carbon cloth (GrCC) exhibited a significant enhancement in the HER activity in contrast to their pristine counterparts. The hybrid electrocatalyst Pd(II)IPA among the three showed an extremely low overpotential of 94.1 mV to achieve a current density of 10 mA cm-2, while Co(II)IPA and Ni(II)IPA complexes showed overpotentials of 367 and 394 mV, respectively, to achieve a current density of 10 mA cm-2. These complexes on carbon cloth showed decreased charge transfer resistance compared to that of pristine metal complexes. The enhanced catalytic activity of the complexes on carbon cloth can be attributed to the porous and conducting nature of the graphitized carbon cloth. For OER activity, the Pd(II)IPA complex showed an excellent performance with an overpotential value of 210 mV, while Co(II)IPA and Ni(II)IPA exhibited overpotentials of 400 and 270 mV, respectively, to drive a current density of 10 mA cm-2 in 0.1 M KOH. This work further widens the scope and application of molecular complexes in combination with an excellent carbon support for renewable energy storage applications.
Collapse
Affiliation(s)
- Ram Murthy
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Brindavan Campus, Kadugodi, Bengaluru 560067, India
| | - Sundaresan Chittor Neelakantan
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Brindavan Campus, Kadugodi, Bengaluru 560067, India
| |
Collapse
|
6
|
Zheng Y, Xu J, Zhu Y, Zhang T, Yang D, Qiu F. Hierarchical Coralline-like (NiCo)S 2@MoS 2 Nanowire Arrays to Accelerate H 2 Release for an Efficient Hydrogen Evolution Reaction. Inorg Chem 2022; 61:5352-5362. [DOI: 10.1021/acs.inorgchem.2c00133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yunhua Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu Province, China
| | - Jinchao Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu Province, China
| | - Yao Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu Province, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu Province, China
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu Province, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu Province, China
| |
Collapse
|