1
|
Li X, He Y, Li K, Zhang S, Hu X, Li Y, Zhang D, Liu Y. Electrospun Micro/Nanofiber-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review. Polymers (Basel) 2024; 16:3155. [PMID: 39599247 PMCID: PMC11598407 DOI: 10.3390/polym16223155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Hydrogen is regarded as an ideal energy carrier to cope with the energy crisis and environmental problems due to its high energy density, cleanliness, and renewability. Although there are several primary methods of industrial hydrogen production, hydrogen evolution reaction (HER) is an efficient, eco-friendly, and sustainably green method for the preparation of hydrogen which has attracted considerable attention. However, this technique is characterized by slow reaction kinetics and high energy potential owing to lack of electrocatalysts with cost-effective and high performance which impedes its scale-up. To address this issue, various studies have focused on electrospun micro/nanofiber-based electrocatalysts for HER due to their excellent electron and mass transport, high specific surface area, as well as high porosity and flexibility. To further advance their development, recent progress of highly efficient HER electrospun electrocatalysts is reviewed. Initially, the characteristics of potential high-performance electrocatalysts for HER are elucidated. Subsequently, the advantages of utilizing electrospinning technology for the preparation of electrocatalysts are summarized. Then, the classification of electrospun micro/nanofiber-based electrocatalysts for HER are analyzed, including metal-based electrospun electrocatalyst (noble metals and alloys, transition metals, and alloys), metal-non-metal electrocatalysts (metal sulfide-based electrocatalysts, metal oxide-based electrocatalysts, metal phosphide-based electrocatalysts, metal nitride-based electrocatalysts, and metal carbide-based electrocatalysts), metal-free electrospun micro/nanofiber-based electrocatalysts, and hybrid electrospun micro/nanofiber-based electrocatalysts. Following this, enhancement strategies for electrospun micro/nanofiber-based electrocatalysts are discussed. Finally, current challenges and the future research directions of electrospun micro/nanofiber-based electrocatalysts for HER are concluded.
Collapse
Affiliation(s)
- Xiuhong Li
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (K.L.); (S.Z.); (X.H.)
| | - Youqi He
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (K.L.); (S.Z.); (X.H.)
| | - Kai Li
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (K.L.); (S.Z.); (X.H.)
| | - Shuailong Zhang
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (K.L.); (S.Z.); (X.H.)
| | - Xinyu Hu
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (K.L.); (S.Z.); (X.H.)
| | - Yi Li
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (K.L.); (S.Z.); (X.H.)
| | - Daode Zhang
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (K.L.); (S.Z.); (X.H.)
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| |
Collapse
|
2
|
Cobalt containing bimetallic ZIFs and their derivatives as OER electrocatalysts: A critical review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Selvasundarasekar SS, Bijoy TK, Kumaravel S, Karmakar A, Madhu R, Bera K, Nagappan S, Dhandapani HN, Mersal GAM, Ibrahim MM, Sarkar D, Yusuf SM, Lee SC, Kundu S. Effective Formation of a Mn-ZIF-67 Nanofibrous Network via Electrospinning: An Active Electrocatalyst for OER in Alkaline Medium. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46581-46594. [PMID: 36194123 DOI: 10.1021/acsami.2c12643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Finding the active center in a bimetallic zeolite imidazolate framework (ZIF) is highly crucial for the electrocatalytic oxygen evolution reaction (OER). In the present study, we constructed a bimetallic ZIF system with cobalt and manganese metal ions and subjected it to an electrospinning technique for feasible fiber formation. The obtained nanofibers delivered a lower overpotential value of 302 mV at a benchmarking current density of 10 mA cm-2 in an electrocatalytic OER study under alkaline conditions. The obtained Tafel slope and charge-transfer resistance values were 125 mV dec-1 and 4 Ω, respectively. The kinetics of the reaction is mainly attributed from the ratio of metals (Co and Mn) present in the catalyst. Jahn-Teller distortion reveals that the electrocatalytic active center on the Mn-incorporated ZIF-67 nanofibers (Mn-ZIF-67-NFs) was found to be Mn3+ along with the Mn2+ and Co2+ ions on the octahedral and tetrahedral sites, respectively, where Co2+ ions tend to suppress the distortion, which is well supported by density functional theory analysis, molecular orbital study, and magnetic studies.
Collapse
Affiliation(s)
- Sam Sankar Selvasundarasekar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - T K Bijoy
- Indo-Korea Science and Technology Center (IKST), Jakkur, Bengaluru560065, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Gaber A M Mersal
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Debashish Sarkar
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai400085, India
| | - Seikh Mohammad Yusuf
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai400085, India
| | - Seung-Cheol Lee
- Indo-Korea Science and Technology Center (IKST), Jakkur, Bengaluru560065, India
- Electronic Materials Research Center, KIST, Seoul136-791, South Korea
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| |
Collapse
|
4
|
Selvasundarasekar SS, Bijoy TK, Kumaravel S, Karmakar A, Madhu R, Bera K, Nagappan S, Dhandapani HN, Lee SC, Kundu S. Constructing electrospun spinel NiFe 2O 4 nanofibers decorated with palladium ions as nanosheets heterostructure: boosting electrocatalytic activity of HER in alkaline water electrolysis. NANOSCALE 2022; 14:10360-10374. [PMID: 35708550 DOI: 10.1039/d2nr02203f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of efficient electrocatalysts for the water splitting process and understanding their fundamental catalytic mechanisms are highly essential to achieving high performance in energy conversion technologies. Herein, we have synthesised spinel nickel ferrite nanofibers (NiFe2O4-NFs) via an electrospinning (ES) method followed by a carbonization process. The resultant fiber was subjected to electrocatalytic water splitting reactions in alkaline medium. The catalytic efficiency of the NiFe2O4-NFs in OER was highly satisfactory. But it is not high enough to catalyse the HER process. Hence, palladium ions were decorated as nanosheets on NiFe2O4-NFs as a heterostructure to improve the catalytic efficiency for HER. Density functional theory (DFT) confirms that the addition of palladium to NiFe2O4-NFs helps to reduce the effect of catalyst poisoning and improve the efficiency of the catalyst. In an alkaline hybrid electrolyser, the required cell voltage was observed as 1.51 V at a fixed current density of 10 mA cm-2.
Collapse
Affiliation(s)
- Sam Sankar Selvasundarasekar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - T K Bijoy
- Indo-Korea Science and Technology Center (IKST), Jakkur, Bengaluru-560065, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Seung-Cheol Lee
- Indo-Korea Science and Technology Center (IKST), Jakkur, Bengaluru-560065, India
- Electronic Materials Research Center, KIST, Seoul 136-791, South Korea
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| |
Collapse
|
5
|
Thenrajan T, Sankar SS, Kundu S, Wilson J. Bimetallic nickel iron zeolitic imidazolate fibers as biosensing platform for neurotransmitter serotonin. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04947-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|