1
|
Jeong AR, Park SR, Shin JW, Kim J, Tokunaga R, Hayami S, Min KS. Mononuclear Fe(III) complexes with 2,4-dichloro-6-((quinoline-8-ylimino)methyl)phenolate: synthesis, structure, and magnetic behavior. Dalton Trans 2024; 53:6809-6817. [PMID: 38545959 DOI: 10.1039/d3dt04385a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Three Fe(III)-based coordination complexes [Fe(dqmp)2](NO3)·H2O (1), [Fe(dqmp)2](BF4)·2CH3COCH3 (2), and [Fe(dqmp)2](ClO4) (3) were synthesized from Fe(NO3)3·9H2O/Fe(ClO4)3·xH2O, NaBF4, and 2,4-dichloro-6-((quinoline-8-ylimino)methyl)phenol (Hdqmp) in methanol/acetone and characterized. The structures of complexes 1-3 were determined via single-crystal X-ray crystallography at 100 K and room temperature, and their magnetic properties in the solid and solution forms were investigated. All complexes showed meridional structures with two tridentate dqmp- ligands coordinated with Fe(III) cations. In the solid state, complex 1 showed an abrupt and complete spin crossover at 225 K, whereas complexes 2 and 3 exhibited an incomplete spin crossover at 135 and 150 K, respectively. In a dimethylformamide solution, the complexes showed counterion-dependent spin transitions. In contrast to the solid state, in solution, complex 1 did not exhibit complete spin crossover. However, complexes 2 and 3 showed more complete spin transitions in solutions than in the solid state. The relaxation times, T1 and T2, for 1 and 2 were determined and both increased with temperature from 220 to 380 K. The T1 of 1 was larger than that of 2 at 380 K, and the T1 values were larger than the T2 values.
Collapse
Affiliation(s)
- Ah Rim Jeong
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Si Ra Park
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jong Won Shin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jihyun Kim
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ryuya Tokunaga
- Department of Chemistry, Kumamoto University, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Department of Chemistry, Kumamoto University, Kumamoto 860-8555, Japan
| | - Kil Sik Min
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
2
|
Hüppe HM, Iffland-Mühlhaus L, Heck J, Eilers M, Gildenast H, Schönfeld S, Dürrmann A, Hoffmann A, Weber B, Apfel UP, Herres-Pawlis S. Triflate vs Acetonitrile: Understanding the Iron(II)-Based Coordination Chemistry of Tri(quinolin-8-yl)amine. Inorg Chem 2023; 62:4435-4455. [PMID: 36888965 DOI: 10.1021/acs.inorgchem.2c03890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
In this study, a synthesis route of tri(quinolin-8-yl)amine (L), a recent member of the tetradentate tris(2-pyridylmethyl)amine (TPA) ligand family, is reported. With the neutral ligand L bound to an iron(II) center in κ4 mode, two cis-oriented coordination sites remain vacant. These can be occupied by coligands such as counterions and solvent molecules. How sensitive this equilibrium can be is most evident if both triflate anions and acetonitrile molecules are available. All three combinations─bis(triflato), bis(acetonitrile), and mixed coligand species─could be characterized by single-crystal X-ray diffraction (SCXRD), which is unique so far for this class of ligand. While at room temperature, the three compounds tend to crystallize concomitantly, the equilibrium can be shifted in favor of the bis(acetonitrile) species by lowering the crystallization temperature. Removed from their mother liquor, the latter is very sensitive to evaporation of the residual solvent, which was observed by powder X-ray diffraction (PXRD) and Mössbauer spectroscopy. The solution behavior of the triflate and acetonitrile species was studied in detail using time- and temperature-resolved UV/vis spectroscopy, Mössbauer spectroscopy of frozen solution, NMR spectroscopy, and magnetic susceptibility measurements. The results indicate a bis(acetonitrile) species in acetonitrile showing a temperature-dependent spin-switching behavior between high- and low-spin. In dichloromethane, the results reveal a high-spin bis(triflato) species. In pursuit of understanding the coordination environment equilibria of the [Fe(L)]2+ complex, a series of compounds with different coligands was prepared and analyzed with SCXRD. The crystal structures indicate that the spin state can be controlled by changing the coordination environment─all of the {N6}-coordinated complexes display geometries expected for low-spin species, while any other donor atom in the coligand position induces a shift to the high-spin state. This fundamental study sheds light on the coligand competition of triflate and acetonitrile, and the high number of crystal structures allows further insights into the influence of different coligands on the geometry and spin state of the complexes.
Collapse
Affiliation(s)
- Henrika M Hüppe
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Linda Iffland-Mühlhaus
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Joshua Heck
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Maverick Eilers
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Hans Gildenast
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Sophie Schönfeld
- Department of Chemistry, Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Andreas Dürrmann
- Department of Chemistry, Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Alexander Hoffmann
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Birgit Weber
- Department of Chemistry, Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Straße 3, 46047 Oberhausen, Germany
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| |
Collapse
|
3
|
Athira S, Mondal DJ, Shome S, Dey B, Konar S. Effect of intermolecular anionic interactions on spin crossover of two triple-stranded dinuclear Fe( ii) complexes showing above room temperature spin transition. Dalton Trans 2022; 51:16706-16713. [DOI: 10.1039/d2dt02115c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new Fe(ii)-based dinuclear triple helicates [Fe2L3]4+, displaying near room temperature spin transition have been synthesized and the effect of intermolecular interactions and co-operativity between metal centers on the SCO has been studied.
Collapse
Affiliation(s)
- S. Athira
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISERB), Bhopal By-pass Road, Bhauri, Madhya Pradesh-462066, India
| | - Dibya Jyoti Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISERB), Bhopal By-pass Road, Bhauri, Madhya Pradesh-462066, India
| | - Shraoshee Shome
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISERB), Bhopal By-pass Road, Bhauri, Madhya Pradesh-462066, India
| | - Bijoy Dey
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISERB), Bhopal By-pass Road, Bhauri, Madhya Pradesh-462066, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISERB), Bhopal By-pass Road, Bhauri, Madhya Pradesh-462066, India
| |
Collapse
|