1
|
Lei W, Li H, Yang M, Liu J, Chen W, Ma P, Niu J, Wang J. Controllable Synthesis and Ultrahigh Proton Conduction of a Hydrogen-Bond Network. Inorg Chem 2024; 63:20492-20500. [PMID: 39413764 DOI: 10.1021/acs.inorgchem.4c03097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
The functionalization of polyoxometalates with organic ligands provides a new-style strategy to accurately incorporate polyoxometalates with advanced functional organic moieties on their surfaces, the development of which has attracted increasing research interest due to the potential applications. A germanium tungstate Na2(H3O)6[{RuIV(bpy)}2{WO2(C2O4)}2(GeW11O39)2]·27H2O (bpy = 2,2'-bipyridine) with two ligands covalently modified was triumphantly synthesized, using the conventional one-pot hydrothermal method. It was systematically characterized by thermogravimetric analysis (TGA), elemental analysis, infrared (IR) spectroscopy, single-crystal X-ray diffraction, X-ray photoelectron spectroscopy (XPS), powder diffraction (PXRD), scanning electronic microscopy (SEM), and ultraviolet-visible (UV-vis) spectroscopy. The two-dimensional (2D) layered structure was established through hydrogen bonding and Na+ bridges. Impedance measurements indicate that it displays outstanding proton conduction properties, with a splendid conductivity up to 1.24 × 10-2 S·cm-1 under 353 K and 90% relative humidity (RH), owing to the rich interlayer hydrogen-bond network formed by the organic ligands ({RuC10H8N2}4+ and {WC2O4}4+), hydrated protons (H3O+), and crystal waters.
Collapse
Affiliation(s)
- Wenjing Lei
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Mengnan Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jiayu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Wenjing Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|
2
|
Song YJ, Ren SY, Zuo S, Shi ZQ, Li Z, Li G. Tailored Porous Ferrocene-Based Metal-Organic Frameworks as High-Performance Proton Conductors. Inorg Chem 2024; 63:8194-8205. [PMID: 38639416 DOI: 10.1021/acs.inorgchem.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Although crystalline metal-organic frameworks (MOFs) have gained a great deal of interest in the field of proton conduction in recent years, the low stability and poor proton conductivity (σ) of some MOFs have hindered their future applications. As a result, resolving the issues listed above must be prioritized. Due to their exceptional structural stability, MOFs with ferrocene groups that exhibit particular physical and chemical properties have drawn a lot of attention. This study describes the effective preparation of a set of three-dimensional ferrocene-based MOFs, MIL-53-FcDC-Al/Ga and CAU-43, containing both main group metals and 1,1'-ferrocene dicarboxylic acid (H2FcDC). Multiple measurements, including powder X-ray diffraction (PXRD), infrared (IR), and scanning electron microscopy (SEM), confirmed that the addition of ferrocene groups enhanced the thermal, water, and acid-base stabilities of the three MOFs. Consequently, their proton-conductive behaviors were meticulously measured utilizing the AC impedance approach, and their best proton conductivities are 5.20 × 10-3, 2.31 × 10-3, and 1.72 × 10-4 S/cm at 100 °C/98% relative humidity (RH), respectively. Excitingly, MIL-53-FcDC-Al/Ga demonstrated an extraordinarily ultrahigh σ of above 10-4 S·cm-1 under 30 °C/98% RH. Using data from structural analysis, PXRD, SEM, thermogravimetry (TG), and activation energy, their proton transport mechanisms were thoroughly examined. The fact that these MOFs are notably easy to assemble, inexpensive, toxin-free, and stable will increase the range of practical uses for them.
Collapse
Affiliation(s)
- Yong-Jie Song
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Si-Yuan Ren
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Shuaiwu Zuo
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Zhi-Qiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Zifeng Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
3
|
Guo YY, Wang RD, Wei WM, Fang F, Wang L, Zhang SS, Zhang J, Du L, Zhao QH. Comparative Analysis of Proton Conductivity in Two Zn-Based MOFs Featuring Sulfate and Sulfonate Functional Groups. Inorg Chem 2024; 63:3870-3881. [PMID: 38356223 DOI: 10.1021/acs.inorgchem.3c04228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Metal-organic frameworks (MOFs) have shown promising potential as proton-conducting materials due to their tunable structures and high porosity. In this study, two novel MOFs had been successfully synthesized, one containing sulfate groups (MOF-1; [Zn4(TIPE)2(SO4)4(H2O)]·5H2O) and the other containing sulfonate groups (MOF-2; [Zn2(TIPE)(5-sip)(NO3)0.66]·0.34NO3·17.5H2O) (TIPE = 1,1,2,2-tetrakis(4-(1H-imidazole-1-yl)phenyl)ethene, H35-sip = 5-sulfoisophthalicacid), and the effect of the two groups on the proton conductivity of Zn-based MOFs had been investigated and compared for the first time. The proton conductivity of these MOFs was systematically measured at different temperatures and humidity conditions. Remarkably, the results revealed significant differences in proton conductivity between the two sets of MOFs. At 90 °C and 98% RH, MOF-1 and MOF-2 achieved optimal proton conductivity of 4.48 × 10-3 and 5.69 × 10-2 S·cm-1, respectively. This was due to the structural differences arising from the presence of different functional groups, which subsequently affected the porosity and hydrophilicity, thereby influencing the proton conductivity. Overall, this comparative study revealed the influence of sulfate and sulfonate groups on the proton conductivity of Zn-based MOFs. This research provided a feasible idea for the development of advanced MOF materials with enhanced proton conductivity and opened up new possibilities for their application in proton devices.
Collapse
Affiliation(s)
- Yuan-Yuan Guo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| | - Rui-Dong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| | - Wei-Ming Wei
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| | - Fang Fang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| | - Lei Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| | - Suo-Shu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| | - Jun Zhang
- New Energy Photovoltaic Industry Research Center, Qinghai University, Xining 810016, People's Republic of China
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| | - Qi-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
| |
Collapse
|
4
|
Ma X, Zhang L, Liu R, Li X, Yan H, Zhao X, Yang Y, Zhu H, Kong X, Yin J, Zhou H, Li X, Kong L, Hao H, Zhong D, Dai F. A Multifunctional Co-Based Metal-Organic Framework as a Platform for Proton Conduction and Ni trophenols Reduction. Inorg Chem 2023. [PMID: 38015879 DOI: 10.1021/acs.inorgchem.3c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The design and development of proton conduction materials for clean energy-related applications is obviously important and highly desired but challenging. An ultrastable cobalt-based metal-organic framework Co-MOF, formulated as [Co2(btzip)2(μ2-OH2)] (namely, LCUH-103, H2btzip = 4, 6-bis(triazol-1-yl)-isophthalic acid) had been successfully synthesized via the hydrothermal method. LCUH-103 exhibits a three-dimensional framework and a one-dimensional microporous channel structure with scu topology based on the binuclear metallic cluster {Co2}. LCUH-103 indicated excellent chemical and thermal stability; peculiarly, it can retain its entire framework in acid and alkali solutions with different pH values for 24 h. The excellent stability is a prerequisite for studying its proton conductivity, and its proton conductivity σ can reach up to 1.25 × 10-3 S·cm-1 at 80 °C and 100% relative humidity (RH). In order to enhance its proton conductivity, the proton-conducting material Im@LCUH-103 had been prepared by encapsulating imidazole molecules into the channels of LCUH-103. Im@LCUH-103 indicated an excellent proton conductivity of 3.18 × 10-2 S·cm-1 at 80 °C and 100% RH, which is 1 order of magnitude higher than that of original LCUH-103. The proton conduction mechanism was systematically studied by various detection means and theoretical calculations. Meanwhile, LCUH-103 is also an excellent carrier for palladium nanoparticles (Pd NPs) via a wetness impregnation strategy, and the nitrophenols (4/3/2-NP) reduction in aqueous solution by Pd@LCUH-103 indicated an outstanding conversion efficiency, high rate constant (k), and exceptional cycling stability. Specifically, the k value of 4-NP reduction by Pd@LCUH-103 is superior to many other reported catalysts, and its k value is as high as 1.34 min-1 and the cycling stability can reach up to 6 cycles. Notably, its turnover frequency (TOF) value is nearly 196.88 times more than that of Pd/C (wt 5%) in the reaction, indicating its excellent stability and catalytic activity.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Ronghua Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xin Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xin Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Yikai Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xiangjin Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Jie Yin
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Huawei Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Lingqian Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Dichang Zhong
- Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and EngineeringTianjin University of TechnologyTianjin300384, China
| | - Fangna Dai
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong266580, China
| |
Collapse
|
5
|
Saha S, Das KS, Pal P, Hazra S, Ghosh A, Bala S, Ghosh A, Das AK, Mondal R. A Silver-Based Integrated System Showing Mutually Inclusive Super Protonic Conductivity and Photoswitching Behavior. Inorg Chem 2023; 62:3485-3497. [PMID: 36780226 DOI: 10.1021/acs.inorgchem.2c03785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoinduced electricity and proton conductivity led fuel cells have emerged, inter alia, as highly promising systems for unconventional energy harvesting. Notwithstanding their individual presence with widely acclaimed results, an integrating system with mutually inclusive manifestation of both features has hitherto not been reported in the literature. To achieve this objective, our approach was to design a ligand system incorporating prerequisite features of both systems, like extended conjugation instigating photophysical activity and functional groups facilitating ionic conduction. As such, we report herein the design, synthesis, and characterization of a pyridyl-pyrazole-based silver compound that exhibits an excellent photocurrent generation and very high proton conductivity. The X-ray single-crystal structure of the Ag complex fully supports our notion, showing extensive π-π conjugated aromatic rings with a protruding free sulfonic group, facing toward solvent-filled channels with numerous supramolecular interactions. The nanoscopic silver metallogel induces semiconductive features in the system which ultimately result in photoresponse behavior in terms of photocurrent generation with an whopping photocurrent gain (Ion/Ioff) of 21.2. To complete the idea of an integrated system, the proton conductivity values were also measured for both gel and crystalline states, while the former state yields a better result. The maximum proton conductivity value turns out to be 1.03 × 10-2 S cm-1 at 70 °C, which is higher than or comparable to those of well-known systems in the literature for proton conductivity.
Collapse
Affiliation(s)
- Sayan Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Pulak Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Soumyajit Hazra
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Sukhen Bala
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Aswini Ghosh
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Abhijit Kumar Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Raju Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| |
Collapse
|
6
|
Yu DN, Yao ZX, Bigdeli F, Gao XM, Cheng X, Li JZ, Zhang JW, Wang W, Guan ZJ, Bu Y, Liu KG, Morsali A. Synthesis and Study of Photothermal Properties of a Mixed-Valence Nanocluster Cu I/Cu II with Strong near-Infrared Optical Absorption Supported by 4- tert-Butylcalix[4]arene Ligand. Inorg Chem 2023; 62:401-407. [PMID: 36537348 DOI: 10.1021/acs.inorgchem.2c03501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The first mixed-valence nanocluster CuI/CuII with the highest percentage of CuII ions was synthesized by using 4-tert-butylcalix[4]arene (Calix4), with the formula DMF2⊂[(CO3)2-@CuII6CuI3(Calix4)3Cl2(DMF)5(H3O)]•DMF (1), as a photothermal nanocluster. Its structure was characterized using single-crystal X-ray diffraction, Fourier-transform infrared spectroscopy, and powder X-ray diffraction. In addition, the charge state and chemical composition of the nanocluster were determined using electrospray ionization spectrometry and X-ray photoelectron spectroscopy (XPS) spectrum. The results of the XPS and X-ray crystallography revealed that there are two independent CuII and CuI centers in nanocluster 1 with the relative abundances of 66.6 and 33.3% for CuII and CuI, respectively. The nanocluster contains three four-coordinated CuI ions with a square-planar geometry and six five-coordinated CuII ions with a square pyramid geometry. The nanocluster shows strong near-infrared optical absorption in the solid state and excellent photothermal conversion ability (the equilibrium temperature ∼78.2 °C) with the light absorption centers in 286-917 nm over previous reported pentanucleus CuI4CuII clusters and CuII compounds.
Collapse
Affiliation(s)
- Dong-Nan Yu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yin-Chuan750021, China
| | - Zi-Xuan Yao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yin-Chuan750021, China
| | - Fahime Bigdeli
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran14115175, Iran
| | - Xue-Mei Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yin-Chuan750021, China
| | - Xun Cheng
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yin-Chuan750021, China
| | - Jing-Zhe Li
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yin-Chuan750021, China
| | - Jing-Wen Zhang
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yin-Chuan750021, China
| | - Wei Wang
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yin-Chuan750021, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Yongfeng Bu
- Institute for Energy Research, Jiangsu University, Zhenjiang212013, China
| | - Kuan-Guan Liu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yin-Chuan750021, China
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran14115175, Iran
| |
Collapse
|
7
|
Liu YR, Chen YY, Jiang YF, Xie LX, Li G. High Water-Assisted Proton Conductivities of Two Cadmium(II) Complexes Constructed from Zwitterionic Ligands. Inorg Chem 2022; 61:19502-19511. [DOI: 10.1021/acs.inorgchem.2c03445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ya-Ru Liu
- School of Science, North University of China, Taiyuan 030051, Shanxi, P. R. China
| | - Yi-Yang Chen
- School of Science, North University of China, Taiyuan 030051, Shanxi, P. R. China
| | - Yuan-Fan Jiang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Li-Xia Xie
- College of Science, Henan Agricultural University, Zhengzhou 450002, Henan, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
8
|
Lian YX, Liu SS, Sun JJ, Luo P, Dong XY, Liu XF, Zang SQ. Post-synthesis functionalization of ZIF-90 with sulfonate groups for high proton conduction. Dalton Trans 2022; 51:14054-14058. [PMID: 36106962 DOI: 10.1039/d2dt02569h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introducing sulfonic acid groups into MOF materials is one of the effective approaches to enhance proton conduction. Here, we attempted to prepare a new post-modified ZIF-90-based material by addition reaction of the aldehyde group with bisulfite to obtain partially functionalized ZIF-90-SO3Na(2.3). ZIF-90-SO3Na(2.3) exhibits a high proton conductivity of 2.26 × 10-2 S cm-1 at 98% RH and 100 °C.
Collapse
Affiliation(s)
- Yu-Xiang Lian
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Shan-Shan Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Jun-Jun Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Peng Luo
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Xi-Yan Dong
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China. .,Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiao-Fei Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Wang S, Zhao L, Sun H, Wu Y, Wang R, Zhang S, Du L, Zhao Q. Two Novel Three‐Dimensional Tetraphenylethylene‐Based Rare Earth MOFs with Ultra‐High Proton Conductivity and Performance Stability. Chemistry 2022; 28:e202202154. [DOI: 10.1002/chem.202202154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Shuyu Wang
- School of Chemical Science and Technology Yunnan University Kunming 650091 Yunnan P. R. China
| | - Lijia Zhao
- School of Chemical Science and Technology Yunnan University Kunming 650091 Yunnan P. R. China
| | - Hanxu Sun
- School of Chemical Science and Technology Yunnan University Kunming 650091 Yunnan P. R. China
| | - Yuanyuan Wu
- School of Chemical Science and Technology Yunnan University Kunming 650091 Yunnan P. R. China
| | - Ruidong Wang
- School of Chemical Science and Technology Yunnan University Kunming 650091 Yunnan P. R. China
| | - Suoshu Zhang
- School of Chemical Science and Technology Yunnan University Kunming 650091 Yunnan P. R. China
| | - Lin Du
- School of Chemical Science and Technology Yunnan University Kunming 650091 Yunnan P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry Yunnan University Kunming 650091 Yunnan P. R. China
| | - Qi‐Hua Zhao
- School of Chemical Science and Technology Yunnan University Kunming 650091 Yunnan P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry Yunnan University Kunming 650091 Yunnan P. R. China
| |
Collapse
|
10
|
Tang H, Lv X, Du J, Liu Y, Liu J, Guo L, Zheng X, Hao H, Liu Z. Improving proton conductivity of metal organic framework materials by reducing crystallinity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huan Tang
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu China
| | - Xueyi Lv
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu China
| | - Juan Du
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology Liaocheng China
| | - Jie Liu
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu China
| | - Lihua Guo
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu China
| | - Xiaofeng Zheng
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology Liaocheng China
| | - Zhe Liu
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu China
| |
Collapse
|
11
|
Zhou L, Ruan M, Meng W, Wang Q, Liu B, Xuan X, Zhang J. Two-dimensional coordination polymers with high proton conductivity and ultrafast highly efficient molecular sieving constructed by the structural inductive effect. Dalton Trans 2022; 51:5796-5800. [PMID: 35356958 DOI: 10.1039/d2dt00364c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of unique 2D-layered Cu-based coordination polymers (abbreviated as HNNU-1α, 1β and 1γ) with different halide anions were successfully constructed using a zwitterion pyridiniumolate as the structural inductive agent (SIA). More importantly, we found that the laminates of HNNU-1α exhibit ultrafast highly-efficient molecular sieving in a water system, and HNNU-1α to 1γ display a good proton conductivity of ca. 2.2 × 10-2, 4.9 × 10-5, and 3.0 × 10-4 S cm-1 at 90 °C and 98% relative humidity (RH), respectively.
Collapse
Affiliation(s)
- Lian Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, New Energy Photovoltaic Industry Research Center, Qinghai University, Xining 810016, P. R. China. .,School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| | - Mingming Ruan
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Wei Meng
- State Key Laboratory of Plateau Ecology and Agriculture, New Energy Photovoltaic Industry Research Center, Qinghai University, Xining 810016, P. R. China.
| | - Qianping Wang
- State Key Laboratory of Plateau Ecology and Agriculture, New Energy Photovoltaic Industry Research Center, Qinghai University, Xining 810016, P. R. China. .,School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| | - Bo Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Xiaopeng Xuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Jun Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, New Energy Photovoltaic Industry Research Center, Qinghai University, Xining 810016, P. R. China. .,School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| |
Collapse
|
12
|
Wang S, Zhao L, Fang F, Wang L, Zhang Z, Zhang S, Du L, Zhao QH. A mixed strategy to fabricate two bifunctional ligand-based Ag-complexes with high proton conductivity. NEW J CHEM 2022. [DOI: 10.1039/d2nj03890k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High proton conductivity materials BAg-1 and BAg-2 were obtained using a mixed strategy with the same main bifunctional ligand.
Collapse
Affiliation(s)
- Shuyu Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Lijia Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Fang Fang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Lei Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Zhen Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Suoshu Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Lin Du
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Qi-Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| |
Collapse
|
13
|
Si CD, Zhang J, Pan FF, Wang P, Liao TL, Zheng WH, Yuan K, Liu JC. Zn/Cu Complexes Constructed through Selective in Situ Br−Cl Exchange: Synthesis, Structures, Properties, and DFT Insights into the Cu-Catalyzed Mechanism. CrystEngComm 2022. [DOI: 10.1039/d2ce00128d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two coordination polymers (CPs) [Cu2(L1)(µ3-OH)(H2O)]n (1) and {[Zn4(L)2(4,4′-bipy)3]•4H2O}n (2) were synthesized under solvothermal conditions. It is unexpectedly found the transformation of aryl−Br to aryl−Cl (Br-Cl exchange) in the formation of...
Collapse
|
14
|
Zhang S, Xie Y, Yang M, Zhu D. Porosity regulation of metal-organic frameworks for high proton conductivity by rational ligand design: mono- versus disulfonyl-4,4′-biphenyldicarboxylic acid. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01610e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous crystalline metal-organic frameworks (MOFs) bearing sulfonic groups (–SO3H) are receiving increasing attention as solid-state proton-conductors because the –SO3H group can not only enhance the proton concentration but also form...
Collapse
|