1
|
Wu T, Dhaka K, Luo M, Wang B, Wang M, Xi S, Zhang M, Huang F, Exner KS, Lum Y. Cooperative Active Sites on Ag 2Pt 3TiS 6 for Enhanced Low-Temperature Ammonia Fuel Cell Electrocatalysis. Angew Chem Int Ed Engl 2024:e202418691. [PMID: 39587937 DOI: 10.1002/anie.202418691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 11/24/2024] [Indexed: 11/27/2024]
Abstract
Ammonia has attracted considerable interest as a hydrogen carrier that can help decarbonize global energy networks. Key to realizing this is the development of low temperature ammonia fuel cells for the on-demand generation of electricity. However, the efficiency of such systems is significantly impaired by the sluggish ammonia oxidation reaction (AOR) and oxygen reduction reaction (ORR). Here, we report the design of a bifunctional Ag2Pt3TiS6 electrocatalyst that facilitates both reactions at mass activities exceeding that of commercial Pt/C. Through comprehensive density functional theory calculations, we identify that active site motifs composed of Pt and Ti atoms work cooperatively to catalyze ORR and AOR. Notably, in situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) experiments indicate a decreased propensity for *NOx formation and hence an increased resistance toward catalyst poisoning for AOR. Employing Ag2Pt3TiS6 as both the cathode and anode, we constructed a low temperature ammonia fuel cell with a high peak power density of 8.71 mW cm-2 and low Pt loading of 0.45 mg cm-2. Our findings demonstrate a pathway towards the rational design of effective electrocatalysts with multi-element active sites that work cooperatively.
Collapse
Affiliation(s)
- Tong Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, 117580, Republic of Singapore
| | - Kapil Dhaka
- Faculty of Chemistry, Theoretical Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Mengjia Luo
- Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Bingqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
| | - Meng Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Republic of Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Fuqiang Huang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai S Exner
- Faculty of Chemistry, Theoretical Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
- Center for Nanointegration (CENIDE) Duisburg-Essen, 47057, Duisburg, Germany
| | - Yanwei Lum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, 117580, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| |
Collapse
|
2
|
Sun T, Wang X, Duan Z, Zhang Q, Zhao Y, Xu GR, Wang W, Wang L. In Situ Preparation of Polyamine-Derived Ru Cluster@N-Doped Porous Carbon Nanoplates for Hydrogen Evolution over Wide pH Ranges. Inorg Chem 2023; 62:17012-17021. [PMID: 37791743 DOI: 10.1021/acs.inorgchem.3c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Efficient and low-cost electrocatalysts for the hydrogen evolution reaction (HER) are required for producing hydrogen energy through water splitting. Carbon materials as HER catalyst supports are explored widely since the strong metal-support interactions are generally believed to be active and stable toward HER. Herein, we report N-doped porous carbon materials as novel substrates to stabilize the cluster metal sites through the Ru(III) polyamine complexes, which play an important role not only in efficient electron transfer but also in the increasing utilization of metallic active sites. Meanwhile, due to the strong metal-support interactions driven by Ru(III) polyamine complexes, the obtained Ru cluster with a mass loading of 3% on N-doped porous carbon nanoplates (Ru cluster@NCs) exhibits robust stability for HER at a constant voltage, proving to be a promising candidate catalyst for HER. Density functional theory calculations further indicate that the Gibbs free energy (ΔG) of adsorbed H* of Ru cluster@NCs is much closer to zero compared to Ru@(10%)NCs and Pt/C(20%), thus Ru cluster@NCs facilitate the HER process.
Collapse
Affiliation(s)
- Tiantian Sun
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xinlin Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhiyao Duan
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Qiong Zhang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yingxiu Zhao
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Guang-Rui Xu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Wei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|