1
|
Im T, Lee J, Kim SC, Randrianandraina J, Lee JW, Chung MW, Park T, Low KH, Lee S, Oh SJ, Kang YC, Weon S, Lee JH, Kim SJ, Jeong S. Single stranded 1D-helical Cu coordination polymer for ultra-sensitive ammonia sensing at room temperature. MATERIALS HORIZONS 2024; 11:4970-4978. [PMID: 39054937 DOI: 10.1039/d4mh00651h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
With the increasing demand for ammonia applications, there is a significant focus on improving NH3 detection performance at room temperature. In this study, we introduce a groundbreaking NH3 gas sensor based on Cu(I)-based coordination polymers, featuring semiconducting, single stranded 1D-helical nanowires constructed from Cu-Cl and N-methylthiourea (MTCP). The MTCP demonstrates an exceptional response to NH3 gas (>900% at 100 ppm) and superior selectivity at room temperature compared to current materials. The interaction mechanism between NH3 and the MTCP sensor is elucidated through a combination of empirical results and computational calculations, leveraging a crystal-determined structure. This reveals the formation of NH3-Cu and NH3-H3C complexes, indicative of a thermodynamically favorable reaction. Additionally, Ag-doped MTCP exhibits higher selectivity and a response over two times greater than the original MTCP, establishing it as a prominent NH3 detection system at room temperature.
Collapse
Affiliation(s)
- Taehun Im
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Juyun Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-mobility, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sung-Chul Kim
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | | | - Joo-Won Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
| | - Myoung Won Chung
- School of Health and Environmental Science & Department of Health and Safety Convergence Science, Korea University, Seoul, 02841, Korea
| | - Taesung Park
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kam-Hung Low
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Seungkyu Lee
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seunghyun Weon
- School of Health and Environmental Science & Department of Health and Safety Convergence Science, Korea University, Seoul, 02841, Korea
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seon Joon Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-mobility, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nanoscience and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sohee Jeong
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
| |
Collapse
|
2
|
Ocampo MVL, Murray LJ. Metal-Tuned Ligand Reactivity Enables CX 2 (X = O, S) Homocoupling with Spectator Cu Centers. J Am Chem Soc 2024; 146:1019-1025. [PMID: 38165085 DOI: 10.1021/jacs.3c11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Ligand non-innocence is ubiquitous in catalysis with ligands in synthetic complexes contributing as electron reservoirs or co-sites for substrate activation. The latter chemical non-innocence is manifested in H+ storage or relay at sites beyond the metal primary coordination sphere. Reaction of a competent CO2-to-oxalate reduction catalyst, namely, [K(THF)3](Cu3SL), where L3- is a tris(β-diketiminate) cyclophane, with CS2 affords tetrathiooxalate at long reaction times or at high CS2 concentrations, where otherwise an equilibrium is established between the starting species and a complex-CS2 adduct in which the CS2 is bound to the C atom on the ligand backbone. X-ray diffraction analysis of this adduct reveals no apparent metal participation, suggesting an entirely ligand-based reaction controlled by the charge state of the cluster. Thermodynamic parameters for the formation of the aforementioned Cligand-CS2 bond were experimentally determined, and trends with cation Lewis acidity were studied, where more acidic cations shift the equilibrium toward the adduct. Relevance of such an adduct in the reduction of CO2 to oxalate by this complex is supported by DFT studies, similar effects of countercation Lewis acidity on product formation, and the homocoupled heterocumulene product speciation as determined by isotopic labeling studies. Taken together, this system extends chemical non-innocence beyond H+ to effect catalytic transformations involving C-C bond formation and represents the rarest example of metal-ligand cooperativity, that is, spectator metal ion(s) and the ligand as the reaction center.
Collapse
Affiliation(s)
- M Victoria Lorenzo Ocampo
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Leslie J Murray
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
3
|
Aust M, Schönherr MI, Halter DP, Schröck L, Pickl T, Deger SN, Hussain MZ, Jentys A, Bühler R, Zhang Z, Meyer K, Kuhl M, Eichhorn J, Medina DD, Pöthig A, Fischer RA. Benzene-1,4-Di(dithiocarboxylate) Linker-Based Coordination Polymers of Mn 2+, Zn 2+, and Mixed-Valence Fe 2+/3. Inorg Chem 2024; 63:129-140. [PMID: 38109782 DOI: 10.1021/acs.inorgchem.3c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Three new coordination polymers (CPs) constructed from the linker 1,4-di(dithiocarboxylate) (BDDTC2-)─the sulfur-analog of 1,4-benzenedicarboxylate (BDC2-)─together with Mn-, Zn-, and Fe-based inorganic SBUs are reported with description of their structural and electronic properties. Single-crystal X-ray diffraction revealed structural diversity ranging from one-dimensional chains in [Mn(BDDTC)(DMF)2] (1) to two-dimensional (2D) honeycomb sheets observed for [Zn2(BDDTC)3][Zn(DMF)5(H2O)] (2). Gas adsorption experiments confirmed a 3D porous structure for the mixed-valent material [Fe2(BDDTC)2(OH)] (3). 3 contains a 1:1 ratio of Fe2+/3+ ions, as evidenced by 57Fe Mössbauer, X-band EPR, and X-ray absorption spectroscopy. Its empirical formula was established by elemental analysis, thermal gravimetric analysis, infrared vibrational spectroscopy, and X-ray absorption spectroscopy in lieu of elusive single-crystal X-ray diffraction data. In contrast to the Mn- and Zn-based compounds 1 and 2, the Fe2+/3+ CP 3 showed remarkably high electrical conductivity of 5 × 10-3 S cm-1 (according to van der Pauw measurements), which is within the range of semiconducting materials. Overall, our study confirms that sulfur derivatives of typical carboxylate linkers (e.g., BDC) are suitable for the construction of electrically conducting CPs, due to acceptedly higher covalency in metal-ligand bonding compared to the electrically insulating carboxylate CPs or metal-organic frameworks. At the same time, the direct comparison between insulating CPs 1 and 2 with CP 3 emphasizes that the electronic structure of the metal is likewise a crucial aspect to construct electrically conductive materials.
Collapse
Affiliation(s)
- Margit Aust
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich, 85747 Garching, Germany
| | - Marina I Schönherr
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11, 81377 Munich, Germany
| | - Dominik P Halter
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich, 85747 Garching, Germany
| | - Lena Schröck
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich, 85747 Garching, Germany
| | - Thomas Pickl
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich, 85747 Garching, Germany
| | - Simon N Deger
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich, 85747 Garching, Germany
| | - Mian Z Hussain
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich, 85747 Garching, Germany
| | - Andreas Jentys
- Chair of Industrial Chemistry and Heterogeneous Catalysis, Department of Chemistry, TUM School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich, 85747 Garching, Germany
| | - Raphael Bühler
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich, 85747 Garching, Germany
| | - Zihan Zhang
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 1, 91058 Erlangen, Germany
| | - Matthias Kuhl
- Walter Schottky Institute, Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Johanna Eichhorn
- Walter Schottky Institute, Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Dana D Medina
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11, 81377 Munich, Germany
| | - Alexander Pöthig
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich, 85747 Garching, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich, 85747 Garching, Germany
| |
Collapse
|