1
|
Tang H, Jia Z, Xu Y, Liu Y, Lin Q. Enhanced Photoluminescence Quantum Yield of Metal Halide Perovskite Microcrystals for Multiple Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304336. [PMID: 37712103 DOI: 10.1002/smll.202304336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Recently, metal 1halide perovskites have shown compelling optoelectronic properties for both light-emitting devices and scintillation of ionizing radiation. However, conventional lead-based metal halide perovskites are still suffering from poor material stability and relatively low X-ray light yield. This work reports cadmium-based all-inorganic metal halides and systematically investigates the influence of the metal ion incorporation on the optoelectronic properties. This work introduces the bi-metal ion incorporation strategy and successfully enhances the photoluminescence quantum yield (98.9%), improves thermal stability, and extends the photoluminescence spectra, which show great potential for white light emission. In addition, the photoluminescent decay is also modulated with single metal ion incorporation, the charge carrier lifetime is successfully reduced to less than 1 µs, and the high luminescent efficiency and X-ray light yield (41 000 photons MeV-1 ) are maintained. Then, these fast scintillators are demonstrated for high-speed light communication and sensitive X-ray detection and imaging.
Collapse
Affiliation(s)
- Haitao Tang
- Hubei Luojia Laboratory, Wuhan, Hubei, 430072, P. R. China
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Zhenglin Jia
- Hubei Luojia Laboratory, Wuhan, Hubei, 430072, P. R. China
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Yalun Xu
- Hubei Luojia Laboratory, Wuhan, Hubei, 430072, P. R. China
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Yong Liu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Qianqian Lin
- Hubei Luojia Laboratory, Wuhan, Hubei, 430072, P. R. China
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
2
|
Dai G, Ma Z, Qiu Y, Li Z, Fu X, Jiang H, Ma Z. Excitation-Dependent Luminescence of 0D ((CH 3) 4N) 2ZrCl 6 across the Full Visible Region. J Phys Chem Lett 2022; 13:7553-7560. [PMID: 35948084 DOI: 10.1021/acs.jpclett.2c01561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, we report a novel hybrid organic-inorganic Zr(IV) metal halide ((CH3)4N)2ZrCl6, which demonstrates fascinating excitation-dependent luminescence across the full visible region. The single crystal of ((CH3)4N)2ZrCl6 showed an unexpected high degree of symmetry and formed a unique 0D structure with isolated [ZrCl6]2- octahedrons. Amazingly, three different emission groups emerged under changeable excitation light. The first emission group peaked at 462 nm with a ns lifetime and a μs lifetime, which is assigned to free-exciton fluorescence and thermally activated delayed fluorescence (TADF). The second group of emissions featured elaborate multipeak light-emitting components, which is ascribed to the d-d transitions of Zr(IV). The third emission group centered at 660 nm was attributed to the typical self-trapped exciton (STE) emission. To our best knowledge, this work for the first time reports a 0D organic-inorganic metal halide with distinctive excitation-dependent full-visible-spectrum luminescence via four different emission mechanisms.
Collapse
Affiliation(s)
- Guangkuo Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhimin Ma
- Beijing National Laboratory for Molecular Sciences, College of Engineering, Peking University, Beijing 100871, China
| | - Yixin Qiu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zewei Li
- Beijing National Laboratory for Molecular Sciences, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaohua Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Jiang
- Beijing National Laboratory for Molecular Sciences, College of Engineering, Peking University, Beijing 100871, China
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Dai G, Ma Z, Qiu Y, Li Z, Fu X, Jiang H, Ma Z. A Red-Emitting Hybrid Manganese Halide Perovskite C 5H 5NOMnCl 2·H 2O Featuring One-Dimensional Octahedron Chains. Inorg Chem 2022; 61:12635-12642. [PMID: 35912500 DOI: 10.1021/acs.inorgchem.2c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we successfully synthesized a new organic-inorganic hybrid manganese halide perovskite C5H5NOMnCl2·H2O, in which organic molecules, water molecules (through O atoms), and Cl atoms coordinate with Mn atoms to form deformed [MnO3Cl3] octahedrons. Then, octahedrons form a chain through edge sharing, resulting in a 1D-chain single crystal structure. The high-quality C5H5NOMnCl2·H2O single crystal prepared by a simple solvent evaporation method produced bright red emission at 656 nm attributed to the d-d transition of Mn2+. Also, it has a photoluminescence quantum yield (PLQY) of 24.2%. Photoluminescence excitation and absorption spectra were both featured with multiple bands and were in good agreement with the Mn2+ 3d energy levels. The photoluminescence decay spectrum showed an average lifetime of 0.466 ms, which further proves the d-d transition mechanism. The C5H5NOMnCl2·H2O single crystal had a direct band gap of 1.43 eV. Moreover, a red light LED with a CCT of 1857 K was obtained based on the C5H5NOMnCl2·H2O powder, indicating its promising application in red-emitting LED.
Collapse
Affiliation(s)
- Guangkuo Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhimin Ma
- Beijing National Laboratory for Molecular Sciences, College of Engineering, Peking University, Beijing 100871, China
| | - Yixin Qiu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zewei Li
- Beijing National Laboratory for Molecular Sciences, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaohua Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Jiang
- Beijing National Laboratory for Molecular Sciences, College of Engineering, Peking University, Beijing 100871, China
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Mandal A, Mondal A, Bhattacharyya R, Bhattacharyya S. Cs 4CuSb 2Cl 12-xI x( x = 0-10) nanocrystals for visible light photodetection. NANOTECHNOLOGY 2022; 33:415403. [PMID: 35793644 DOI: 10.1088/1361-6528/ac7ed2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Lead-free layered double perovskite nanocrystals (NCs) with tunable visible range emission, high carrier mobility and low trap density are the need of the hour to make them applicable for optoelectronic and photovoltaic devices. Introduction of Cu2+in the high band gap Cs3Sb2Cl9lattice transforms it to the monoclinic Cs4CuSb2Cl12(CCSC) NCs having a direct band gap of 1.96 eV. The replacement of 50% Cl-by I-ions generates <5 nm Cs4CuSb2Cl6I6(C6I6) monodispersed NCs with an unchanged crystal system but with further lowering of the band gap to 1.92 eV. Thep-type C6I6 NCs exhibit emission spectra, lower trap density, appreciable hole mobility and most importantly a lower exciton binding energy of only 50.8 ± 1.3 meV. The temperature dependent photoluminescence (PL) spectra of the C6I6 NCs show a decrease in non-radiative recombination from 300 K down to 78 K. When applied as the photoactive layer in out-of-plane photodetector devices, C6I6 NC devices exhibit an appreciable responsivity of 0.67 A W-1at 5 V, detectivity of 4.55 × 108Jones (2.5 V), and fast photoresponse with rise and fall time of 126 and 94 ms, respectively. On the other hand, higher I-substitution in Cs4CuSb2Cl2I10NCs (C2I10) degrades the lattice into a mixture of monoclinic and trigonal crystal phases, which also lowers the device performance.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India
| | - Anamika Mondal
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India
| | - Rachana Bhattacharyya
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India
| |
Collapse
|
5
|
Chang T, Wei Q, Wang Z, Gao Y, Lian B, Zhu X, Cao S, Zhao J, Zou B, Zeng R. Phase-Selective Solution Synthesis of Cd-Based Perovskite Derivatives and Their Structure/Emission Modulation. J Phys Chem Lett 2022; 13:3682-3690. [PMID: 35438490 DOI: 10.1021/acs.jpclett.2c00863] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rich phase structures of perovskite derivatives have attracted extensive attention and can be applied in the fields of optoelectronics due to their high emission efficiency and tunable emission. Herein, we explored a phase-selective solution synthetic route to obtain different Cd-based perovskite derivatives. First, the pristine tetragonal Cs7Cd3Br13 was obtained by a solvothermal method, and its photoluminescence quantum yield (PLQY) was boosted from 8.28% to 57.62% after appropriate Sb3+ doping. Furthermore, halogen substitution was adopted to modify Sb:Cs7Cd3Br13 and produced a series of Cd-based perovskite derivatives with different crystal structures and tunable emission from cyan to orange (517-625 nm). The mechanisms behind such experimental phenomena were further investigated and discussed on the basis of material characterization and theoretical computation. This study presented an effective strategy to synthesize bright Cd-based perovskite derivatives with different structures and modulated emission, and it also provided insights to understand the structure/emission modulation via halogen substitution.
Collapse
Affiliation(s)
- Tong Chang
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Qilin Wei
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Ziyi Wang
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Yilin Gao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Bo Lian
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Xiaoshan Zhu
- Department of Electrical and Biomedical Engineering, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Sheng Cao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Jialong Zhao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Ruosheng Zeng
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|