1
|
Sun X, Gu YF, Zhang XM, Shen Y, Wang DH, Zhang SM, Yu MH, Chang Z. A linker selective retention strategy to construct hierarchical porous metal-organic frameworks with high catalytic activity for oxidative desulfurization. Dalton Trans 2024; 53:6157-6161. [PMID: 38488126 DOI: 10.1039/d4dt00154k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In order to improve the oxidative desulfurization (ODS) performance of MOF materials, an effective way is to convert a microporous MOF into a hierarchical porous MOF (HP-MOF) by utilizing the linker selective retention strategy. Herein, UiO-66 with the introduction of an unstable linker ligand (dihydro-1,2,4,5-tetrazine-3,6-dicarboxylate, dhtz) can selectively remove dhtz ligands to form HP-MOF (HP-UiO-66-dhtz) through heat treatment at high temperature. While maintaining the original structure of UiO-66, HP-UiO-66-dhtz features mesopores and abundant Lewis acid sites, showing excellent ODS performance for diphenylthiophene (DBT).
Collapse
Affiliation(s)
- Xiaowen Sun
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yun-Feng Gu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiao-Min Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Shen
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Dan-Hong Wang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Shu-Ming Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Ze Chang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Li Q, Li Q, Wang Z, Zheng X, Cai S, Wu J. Recent Advances in Hierarchical Porous Engineering of MOFs and Their Derived Materials for Catalytic and Battery: Methods and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303473. [PMID: 37840383 DOI: 10.1002/smll.202303473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/05/2023] [Indexed: 10/17/2023]
Abstract
Hierarchical porous materials have attracted the attention of researchers due to their enormous specific surface area, maximized active site utilization efficiency, and unique structure and properties. In this context, metal-organic frameworks (MOFs) offer a unique mix of properties that make them particularly appealing as tunable porous substrates containing highly active sites. This review focuses on recent advances in the types and synthetic strategies of hierarchical porous MOFs and their derived materials. Furthermore, it highlights the relationship between the mass diffusion and transport of hierarchical porous structures and the pore size with examples and simulations, while identifying their potential and limitations. On this basis, how the synthesis conditions affect the structure and electrochemical properties of MOFs based hierarchical porous materials with different structures is discussed, highlighting the prospects and challenges for the synthetization, as well as further scientific research and practical applications. Finally, some insights into current research and future design ideas for advanced MOFs based hierarchical porous materials are presented.
Collapse
Affiliation(s)
- Qian Li
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha, 410081, China
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qun Li
- National Center for Nanoscience and Technology, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, Beijing, 100190, China
| | - Zhewei Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shichang Cai
- School of Material Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Liu JW, Lv SY, Gong YN, Lin XL, Mei JH, Zhong DC, Lu TB. Water-Etched Approach to Hierarchically Porous Metal-Organic Frameworks with High Stability. Inorg Chem 2023; 62:11611-11617. [PMID: 37428154 DOI: 10.1021/acs.inorgchem.3c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The development of hierarchically porous metal-organic frameworks (MOFs) with high stability is desirable to expand their applications but remains challenging. Herein, an anionic sodalite-type microporous MOF (Yb-TTCA; TTCA3- = triphenylene-2,6,10-tricarboxylate) was synthesized, which shows outstanding catalytic activities for the cycloaddition of CO2 into cyclic carbonates. Moreover, the microporous Yb-TTCA can be transformed into a hierarchical micro- and mesoporous Yb-TTCA by water treatment with the mesopore sizes of 2 to 12 nm. The hierarchically porous Yb-TTCA (HP-Yb-TTCA) not only exhibits a high thermal stability up to 500 °C but also shows a high chemical stability in aqueous solutions with pH values ranging from 2 to 12. In addition, the HP-Yb-TTCA displays enhanced performance for the removal of organic dyes in comparison with microporous Yb-TTCA. This work provides a facile way to construct hierarchically porous MOF materials.
Collapse
Affiliation(s)
- Jin-Wang Liu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
- Key Laboratory of Jiangxi University for Functional Material Chemistry, College of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Si-Ya Lv
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yun-Nan Gong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xue-Lian Lin
- Key Laboratory of Jiangxi University for Functional Material Chemistry, College of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jian-Hua Mei
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Di-Chang Zhong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
4
|
Guo L, Gao H, Liu K, Ding Y, Li X, Xie H. Construction of TiO2 Microsphere through Different Titanium Precursors via a Green Pathway. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|