1
|
Rahimi N, Lepetit C, Zargarian D. Unlocking CO 2 Activation With a Novel Ni-Hg-Ni Trinuclear Complex. Angew Chem Int Ed Engl 2025; 64:e202420391. [PMID: 39777965 DOI: 10.1002/anie.202420391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Compounds featuring bonds between mercury and transition metals are of interest for their intriguing/ambiguous bonding and scarcely explored reactivities. We report herein the synthesis and reactivities of the new compound [(POCOP)Ni]2Hg, [Ni2Hg], featuring a trinuclear Ni-Hg-Ni core (POCOP=κP,κC,κP'-2,6-(i-Pr2PO)2C6H3). [Ni2Hg] reacts with CO2 to give the carbonate-bridged complex [Ni2CO3]. Bubbling CO gas through a solution of [Ni2CO3] gave its μ-CO2 analogue [Ni2CO2], which itself reacts with CO2 to give back [Ni2CO3], indicating that these two compounds interconvert reversibly. This implies that the formation of [Ni2CO3] from [Ni2Hg] and CO2 constitutes a reductive disproportionation of two molecules of CO2 into CO3 2- and CO. Tests showed that this process proceeds through three steps, an initial CO2 insertion to give [Ni2CO2], followed by another CO2 insertion to give the second intermediate [Ni2C2O4], and the latter's decarbonylation to give [Ni2CO3]. Although the putative second intermediate could not be isolated, we have shown that it likely features a μ-carbonyl-carbonate rather than a μ-oxalate moiety, because the latter complex is thermally stable to decarbonylation. Reduction of [Ni2CO3] with excess Na/Hg regenerates [Ni2Hg], establishing that the observed deoxygenation of CO2 in this system can, in principle, be catalytic in the presence of excess reductant.
Collapse
Affiliation(s)
- Naser Rahimi
- Département de chimie, Université de Montréal, Montréal, Québec, Canada, H3C 3J7
| | | | - Davit Zargarian
- Département de chimie, Université de Montréal, Montréal, Québec, Canada, H3C 3J7
| |
Collapse
|
2
|
Tricoire M, Sroka W, Rajeshkumar T, Scopelliti R, Sienkiewicz A, Maron L, Mazzanti M. Multielectron Redox Chemistry of Ytterbium Complexes Reaching the +1 and Zero Formal Oxidation States. J Am Chem Soc 2025; 147:1162-1171. [PMID: 39680610 DOI: 10.1021/jacs.4c14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Lanthanide redox reactivity remains limited to one-electron transfer reactions due to their inability to access a broad range of oxidation states. Here, we show that multielectron reductive chemistry is achieved for ytterbium by using the tripodal tris(siloxide)arene redox-active ligand, which can store two electrons in the arene anchor. Reduction of the Yb(III) complex of the tris(siloxide)arene tripodal ligand affords the Yb(II) analogue by metal-centered reduction. Two subsequent reduction events occur mainly at the ligand with retention of the ligand framework and formation of analogous complexes of Yb in the formal +1 and zero oxidation states. Four complexes of Yb in four different oxidation states were isolated, crystallographically and spectroscopically characterized, and their electronic structure was confirmed by DFT studies. Reactivity studies show that the "Yb(I)" complex can transfer two electrons to organic azides, with retention of its molecular structure, to form highly reactive imido intermediates, providing a rare example of a two-electron transfer at a single lanthanide center that does not involve accessing the +4 oxidation state.
Collapse
Affiliation(s)
- Maxime Tricoire
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Weronika Sroka
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Toulouse Cedex 4, France
| | - Rosario Scopelliti
- X-ray Diffraction and Surface Analytics Platform, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Andrzej Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- ADSresonances Sarl, CH-1920 Martigny, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Toulouse Cedex 4, France
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Carpenter SH, Mengell J, Chen J, Jones MR, Kirk ML, Tondreau AM. Determining the Effects of Zero-Field Splitting and Magnetic Exchange in Dimeric Europium(II) Complexes. Inorg Chem 2024; 63:8516-8520. [PMID: 38667056 DOI: 10.1021/acs.inorgchem.4c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Related BAP [BAP = bis(acyl)phosphide] and Acac (Acac = β-diketonate) molecules perform as robust supports for both lanthanide and actinide metals. Here, a molecular bimetallic Eu2+ complex was successfully targeted and isolated by employing sodium bis(mesitoyl)phosphide [Na(mesBAP)] in a salt metathesis with EuI2, producing [Eu(mesBAP)2(et2o)]2 (et2o = metal-coordinated diethyl ether). The corresponding Acac-Eu2+ complex was targeted using mesAcac- (1,3-dimesityl-1,3-propanedione), generating [Eu(mesAcac)2(et2o)]2. Both complexes were characterized by single-crystal X-ray diffraction, UV-vis, IR, and NMR spectroscopies, and variable-temperature magnetic susceptibility. [Eu(mesBAP)2(et2o)]2 was persistent under anaerobic, anhydrous conditions, whereas the analogous [Eu(mesAcac)2(et2o)]2 showed evidence of decomposition under identical conditions. Variable-temperature magnetic susceptibility and magnetization studies of [Eu(mesBAP)2(et2o)]2 and [Eu(mesAcac)2(et2o)]2 were performed, resulting in similar magnetic exchange coupling values of Jex = -0.018 and -0.023 cm-1 and axial zero-field-splitting D values of -0.38 and -0.51 cm-1, respectively.
Collapse
Affiliation(s)
- Stephanie H Carpenter
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Joshua Mengell
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Ju Chen
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Margaret R Jones
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
- The Center for High Technology Materials, The University of New Mexico, Albuquerque, New Mexico 87106, United States
- The Center for Quantum Information and Control, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Aaron M Tondreau
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
4
|
Landaeta VR, Horsley Downie TM, Wolf R. Low-Valent Transition Metalate Anions in Synthesis, Small Molecule Activation, and Catalysis. Chem Rev 2024; 124:1323-1463. [PMID: 38354371 PMCID: PMC10906008 DOI: 10.1021/acs.chemrev.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
This review surveys the synthesis and reactivity of low-oxidation state metalate anions of the d-block elements, with an emphasis on contributions reported between 2006 and 2022. Although the field has a long and rich history, the chemistry of transition metalate anions has been greatly enhanced in the last 15 years by the application of advanced concepts in complex synthesis and ligand design. In recent years, the potential of highly reactive metalate complexes in the fields of small molecule activation and homogeneous catalysis has become increasingly evident. Consequently, exciting applications in small molecule activation have been developed, including in catalytic transformations. This article intends to guide the reader through the fascinating world of low-valent transition metalates. The first part of the review describes the synthesis and reactivity of d-block metalates stabilized by an assortment of ligand frameworks, including carbonyls, isocyanides, alkenes and polyarenes, phosphines and phosphorus heterocycles, amides, and redox-active nitrogen-based ligands. Thereby, the reader will be familiarized with the impact of different ligand types on the physical and chemical properties of metalates. In addition, ion-pairing interactions and metal-metal bonding may have a dramatic influence on metalate structures and reactivities. The complex ramifications of these effects are examined in a separate section. The second part of the review is devoted to the reactivity of the metalates toward small inorganic molecules such as H2, N2, CO, CO2, P4 and related species. It is shown that the use of highly electron-rich and reactive metalates in small molecule activation translates into impressive catalytic properties in the hydrogenation of organic molecules and the reduction of N2, CO, and CO2. The results discussed in this review illustrate that the potential of transition metalate anions is increasingly being tapped for challenging catalytic processes with relevance to organic synthesis and energy conversion. Therefore, it is hoped that this review will serve as a useful resource to inspire further developments in this dynamic research field.
Collapse
Affiliation(s)
| | | | - Robert Wolf
- University of Regensburg, Institute
of Inorganic Chemistry, 93040 Regensburg, Germany
| |
Collapse
|
5
|
Hsueh FC, Rajeshkumar T, Maron L, Scopelliti R, Sienkiewicz A, Mazzanti M. Isolation and redox reactivity of cerium complexes in four redox states. Chem Sci 2023; 14:6011-6021. [PMID: 37293643 PMCID: PMC10246686 DOI: 10.1039/d3sc01478a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
The chemistry of lanthanides is limited to one electron transfer reactions due to the difficulty of accessing multiple oxidation states. Here we report that a redox-active ligand combining three siloxides with an arene ring in a tripodal ligand can stabilize cerium complexes in four different redox states and can promote multielectron redox reactivity in cerium complexes. Ce(iii) and Ce(iv) complexes [(LO3)Ce(THF)] (1) and [(LO3)CeCl] (2) (LO3 = 1,3,5-(2-OSi(OtBu)2C6H4)3C6H3) were synthesized and fully characterized. Remarkably the one-electron reduction and the unprecedented two-electron reduction of the tripodal Ce(iii) complex are easily achieved to yield reduced complexes [K(2.2.2-cryptand)][(LO3)Ce(THF)] (3) and [K2{(LO3)Ce(Et2O)3}] (5) that are formally "Ce(ii)" and "Ce(i)" analogues. Structural analysis, UV and EPR spectroscopy and computational studies indicate that in 3 the cerium oxidation state is in between +II and +III with a partially reduced arene. In 5 the arene is doubly reduced, but the removal of potassium results in a redistribution of electrons on the metal. The electrons in both 3 and 5 are stored onto δ-bonds allowing the reduced complexes to be described as masked "Ce(ii)" and "Ce(i)". Preliminary reactivity studies show that these complexes act as masked Ce(ii) and Ce(i) in redox reactions with oxidizing substrates such as Ag+, CO2, I2 and S8 effecting both one- and two-electron transfers that are not accessible in classical cerium chemistry.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées 31077 Toulouse, Cedex 4 France
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées 31077 Toulouse, Cedex 4 France
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Andrzej Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- ADSresonances Sàrl 1920 Martigny Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|