1
|
Verteramo ML, Ignjatović MM, Kumar R, Wernersson S, Ekberg V, Wallerstein J, Carlström G, Chadimová V, Leffler H, Zetterberg F, Logan DT, Ryde U, Akke M, Nilsson UJ. Interplay of halogen bonding and solvation in protein-ligand binding. iScience 2024; 27:109636. [PMID: 38633000 PMCID: PMC11021960 DOI: 10.1016/j.isci.2024.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Halogen bonding is increasingly utilized in efforts to achieve high affinity and selectivity of molecules designed to bind proteins, making it paramount to understand the relationship between structure, dynamics, and thermodynamic driving forces. We present a detailed analysis addressing this problem using a series of protein-ligand complexes involving single halogen substitutions - F, Cl, Br, and I - and nearly identical structures. Isothermal titration calorimetry reveals an increasingly favorable binding enthalpy from F to I that correlates with the halogen size and σ-hole electropositive character, but is partially counteracted by unfavorable entropy, which is constant from F to Cl and Br, but worse for I. Consequently, the binding free energy is roughly equal for Cl, Br, and I. QM and solvation-free-energy calculations reflect an intricate balance between halogen bonding, hydrogen bonds, and solvation. These advances have the potential to aid future drug design initiatives involving halogenated compounds.
Collapse
Affiliation(s)
| | | | - Rohit Kumar
- Department of Chemistry, Lund University, Lund, Sweden
| | | | | | | | | | | | - Hakon Leffler
- Microbiology, Immunology, and Glycobiology, Department of Experimental Medicine, Lund University, Lund, Sweden
| | | | | | - Ulf Ryde
- Department of Chemistry, Lund University, Lund, Sweden
| | - Mikael Akke
- Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
2
|
Jena R, Laha S, Dwarkanath N, Hazra A, Haldar R, Balasubramanian S, Maji TK. Noncovalent interaction guided selectivity of haloaromatic isomers in a flexible porous coordination polymer. Chem Sci 2023; 14:12321-12330. [PMID: 37969590 PMCID: PMC10631220 DOI: 10.1039/d3sc03079b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
Porous, supramolecular structures exhibit preferential encapsulation of guest molecules, primarily by means of differences in the order of (noncovalent) interactions. The encapsulation preferences can be for geometry (dimension and shape) and the chemical nature of the guest. While geometry-based sorting is relatively straightforward using advanced porous materials, designing a "chemical nature" specific host is not. To introduce "chemical specificity", the host must retain an accessible and complementary recognition site. In the case of a supramolecular, porous coordination polymer (PCP) [Zn(o-phen)(ndc)] (o-phen: 1,10-phenanthroline, ndc: 2,6-naphthalenedicarboxylate) host, equipped with an adaptable recognition pocket, we have discovered that the preferential encapsulation of a haloaromatic isomer is not only for dimension and shape, but also for the "chemical nature" of the guest. This selectivity, i.e., preference for the dimension, shape and chemical nature, is not guided by any complementary recognition site, which is commonly required for "chemical specificity". Insights from crystal structures and computational studies unveil that the differences in the different types of noncovalent host-guest interaction strengths, acting in a concerted fashion, yield the unique selectivity.
Collapse
Affiliation(s)
- Rohan Jena
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| | - Subhajit Laha
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| | - Nimish Dwarkanath
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| | - Arpan Hazra
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| | - Ritesh Haldar
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad 500046 Telangana India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| |
Collapse
|
3
|
Doñagueda Suso B, Legrand A, Weetman C, Kennedy AR, Fletcher AJ, Furukawa S, Craig GA. Porous Metal-Organic Cages Based on Rigid Bicyclo[2.2.2]oct-7-ene Type Ligands: Synthesis, Structure, and Gas Uptake Properties. Chemistry 2023; 29:e202300732. [PMID: 37022280 PMCID: PMC10947411 DOI: 10.1002/chem.202300732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/07/2023]
Abstract
Three new ligands containing a bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxydiimide unit have been used to assemble lantern-type metal-organic cages with the general formula [Cu4 L4 ]. Functionalisation of the backbone of the ligands leads to distinct crystal packing motifs between the three cages, as observed with single-crystal X-ray diffraction. The three cages vary in their gas sorption behaviour, and the capacity of the materials for CO2 is found to depend on the activation conditions: softer activation conditions lead to superior uptake, and one of the cages displays the highest BET surface area found for lantern-type cages so far.
Collapse
Affiliation(s)
| | - Alexandre Legrand
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto UniversityiCeMS Research Building Yoshida, Sakyo-kuKyotoJapan
- Unité de Catalyse et Chimie du Solide (UCCS)Université de LilleCNRSCentrale LilleUniversité d'ArtoisUMR 818159000LilleFrance
| | - Catherine Weetman
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Alan R. Kennedy
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Ashleigh J. Fletcher
- Department of Chemical and Process EngineeringUniversity of StrathclydeGlasgowG1 1XJUK
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto UniversityiCeMS Research Building Yoshida, Sakyo-kuKyotoJapan
- Department of Synthetic Chemistry and Biological ChemistryKyoto UniversityiCeMS Research Building Yoshida, Sakyo-kuKyotoJapan
| | - Gavin A. Craig
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|