1
|
Das S, Sahoo A, Baitalik S. Advancing Molecular-Scale Logic Devices through Multistage Switching in a Luminescent Bimetallic Ru(II)-Terpyridine Complex. Inorg Chem 2024; 63:14933-14942. [PMID: 39091180 DOI: 10.1021/acs.inorgchem.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Stimuli-responsive multistep switching phenomena of a luminescent bimetallic Ru(II) complex are employed herein to fabricate multiple configurable logic devices. The complex exhibits "off-on" and "on-off" emission switching upon alternative treatment with visible and UV light. Additionally, remarkable augmentation of the rate as well as quantum yield of photoisomerization was achieved via the use of a chemical oxidant (Ce4+) as well as a reductant (metallic sodium). Upon exploiting the emission spectral response of the complex, several advanced Boolean logic functions, including IMPLICATION as well as 2-input 2-output and 3-input 2-output complex combinational logic gates, are successfully implemented. Additionally, by utilizing the vast efficacy of Python, a novel "logic_circuit" model is devised that is capable of making accurate decisions under the influence of various input combinations. This model transcends traditional Boolean logic gates, offering flexibility and intuition to design logical functions tailored to specific chemical contexts. By integrating principles of logic circuits with chemical processes, this innovative approach enables structure determination of the chemical states based on input conditions, thereby unlocking avenues for exploring intricate interactions and reactions beyond conventional Boolean logic paradigms.
Collapse
Affiliation(s)
- Soumi Das
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
2
|
Elbeheiry HM, Schulz M. Enhancing Control Over Nitric Oxide Photorelease via a Molecular Keypad Lock. Chemistry 2024; 30:e202400709. [PMID: 38700927 DOI: 10.1002/chem.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 05/23/2024]
Abstract
Based on Boolean logic, molecular keypad locks secure molecular information, typically with an optical output. Here we investigate a rare example of a molecular keypad lock with a chemical output. To this end, the light-activated release of biologically important nitric oxide from a ruthenium complex is studied, using proton concentration and photon flux as inputs. In a pH-dependent equilibrium, a nitritoruthenium(II) complex is turned into a nitrosylruthenium(II) complex, which releases nitric oxide under irradiation with visible light. The precise prediction of the output nitric oxide concentration as function of the pH and photon flux is achieved with an artificial intelligence approach, namely the adaptive neuro-fuzzy inference system. In this manner an exceptionally high level of control over the output concentration is obtained. Moreover, the provided concept to lock a chemical output as well as the output prediction may be applied to other (photo)release schemes.
Collapse
Affiliation(s)
- Hani M Elbeheiry
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Department of Chemistry, Faculty of Science, Damietta University, 34517, New Damietta, Egypt
| | - Martin Schulz
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Department Functional Interfaces, Leibniz-Institute of Photonic Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| |
Collapse
|
3
|
Ahmed T, Chakraborty A, Baitalik S. Terpyridyl-Imidazole Based Ligand Coordinated to Ln(Hexafluoroacetyl acetonate) 3 Core: Synthesis, Structural Characterization, Luminescence Properties, and Thermosensing Behaviors in Solution and PMMA Film. Inorg Chem 2024; 63:11279-11295. [PMID: 38822820 DOI: 10.1021/acs.inorgchem.4c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
A new array of ternary lanthanide complexes of the form [Ln(hfa)3(tpy-HImzphen)] have been synthesized and thoroughly characterized wherein Ln = LaIII (1), EuIII (2), SmIII (3), and TbIII (4); hfa = hexafluoroacetylacetonate; and tpy-HImzphen = 2-(4-[2,2':6',2″]terpyridin-4'-yl-phenyl)-1H-phenanthro[9,10-d]imidazole. Incorporation of tpy-HImzphen onto the Ln-hfa moiety induced a bathochromic shift of the absorption window of the complexes into the visible region. Extensive investigations of the luminescence characteristics have been conducted both at RT and at 77 K to understand the deactivation pathways of the complexes. Both steady-state and time-resolved emission spectral behaviors indicate four distinctive behaviors upon incorporation of tpy-HImzphen onto the lanthanide core, viz., a huge red-shift of the ligand-centered peak for LaIII; almost complete energy transfer for EuIII; very little energy transfer for SmIII, while reverse energy transfer in the case of TbIII. In addition, the EuIII-complex exhibits its excellence in luminescence thermometry in the solution state as well as in poly(methyl methacrylate) (PMMA) thin films. The thermosensitive luminescence response in solution was further utilized to mimic set-reset flip-flop logic operation. A plausible energy transfer scheme has been devised to explain dissimilar luminescence behaviors in the complexes. The role of LMCT was also considered for the observed thermosensing property of the Eu(III) complex.
Collapse
Affiliation(s)
- Toushique Ahmed
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Amit Chakraborty
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
4
|
Samanta SS, Giri S, Mandal S, Mandal U, Beg H, Misra A. A fluorescence based dual sensor for Zn 2+ and PO 43- and the application of soft computing methods to predict machine learning outcomes. Phys Chem Chem Phys 2024; 26:10037-10053. [PMID: 38482924 DOI: 10.1039/d3cp05662g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A phenolphthalein-based Schiff base, 3,3-bis-{4-hydroxy-3-[(pyridine-2-ylmethylimino)-methyl]-phenyl}-3H-isobenzofuran-1-one (PAP), has been synthesized and used for selective fluorescence 'turn on' and 'turn off' sensing of Zn2+ and PO43- respectively. The limit of detection using the 3σ method for Zn2+ is found to be 19.3 nM and that for PO43- is 8.3 μM. The sensing mechanism of PAP for Zn2+ ions has been explained by 1H NMR, 13C NMR, TRPL, ESI-MS, FT-IR, and DFT based calculations. Taking advantage of this fluorescence 'on-off' behavior of PAP in the sequential presence of Zn2+ and PO43- a two input fuzzy logic (FL) operation has been constructed. The chemosensor PAP can thus act as a metal ion and anion responsive molecular switch, and its corresponding emission intensity is used to mimic numerous FL functions. To replace various expensive, time-consuming experimental procedures, we implemented machine learning soft computing tools, such as fuzzy-logic, artificial neural networks (ANNs), and adaptive neuro-fuzzy inference systems (ANFIS), to correlate as well as predict the fluorescence intensity in the presence of any equivalent ratio of Zn2+ and PO43-. The statistical performance measures (MSE and RMSE, for example) show that the projected values of the cation and anion sensing data by the ANFIS network are the best and closer to the experimental values.
Collapse
Affiliation(s)
| | - Subhadip Giri
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
| | - Sourav Mandal
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
| | - Usha Mandal
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
| | - Hasibul Beg
- Department of Chemistry, Raja N. L. Khan Women's College, Midnapore, 721102, India
| | - Ajay Misra
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
5
|
Sahoo A, Bar M, Biswas R, Abedin T, Baitalik S. Modulation of ground and excited state properties of ruthenium complexes through sequential incorporation of metal into a polypyridyl-imidazole bridging ligand. Dalton Trans 2023; 52:15896-15906. [PMID: 37840479 DOI: 10.1039/d3dt02757k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
A polypyridyl-imidazole-based bridging ligand, 2-(4-(4,5-di(pyridine-2-yl)-1H-imidazole-2-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (phen-H2PhImz-bpy), possessing three bidentate coordinating sites, has been designed in this work. The bridging ligand is employed to synthesize mono-, bi-, and trimetallic Ru(II) complexes in combination with terminal bipyridine units for the systematic modulation of photophysical and redox properties upon sequential incorporation of the metal unit into the bridge. All the compounds are characterized via NMR spectroscopy and electrospray ionization mass spectrometry. Absorption and both steady-state and time-resolved emission spectroscopic investigations of the ligand as well as Ru(II) complexes are thoroughly conducted in different solvents. The redox behaviors of the complexes are examined through cyclic voltammetry (CV) in acetonitrile. The focus of the investigation is centered on the systematic modulation of MLCT absorption and emission as well as the redox behavior of the complex entity upon the gradual incorporation of the Ru2+ unit into the complex backbone. The emission energy, quantum yield and lifetime are found to decrease systematically with an increase in the Ru2+ unit in the complex backbone and a linear relationship is observed in each case. A good correlation is also observed between the emission energies of complexes with their respective ΔE1/2 values (the difference between the first oxidation and first reduction potential).
Collapse
Affiliation(s)
- Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Manoranjan Bar
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Raju Biswas
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Tuhin Abedin
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
6
|
Ganguly T, Pal P, Maity D, Baitalik S. Synthesis, characterization and emission switching behaviors of styrylphenyl-conjugated Ru(II)-terpyridine complexes via aggregation and trans–cis photoisomerization. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
7
|
Bhattacharya S, Sahoo A, Baitalik S. Human brain-inspired chemical artificial intelligence tools for the analysis and prediction of the anion-sensing characteristics of an imidazole-based luminescent Os(II)-bipyridine complex. Dalton Trans 2023; 52:6749-6762. [PMID: 37129261 DOI: 10.1039/d3dt00327b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Neural network and decision tree-based soft computing techniques are implemented in this work for the thorough analysis of the multichannel anion-sensing characteristics of an Os(II)-bipyridine complex derived from imidazole-4,5-bis(benzimidazole) ligand. With the aid of three imidazole NH protons in its outer coordination sphere, a substantial change in the spectral response as well as OsII/OsIII potential is made possible upon treating with anions of varying basicity. Initial hydrogen bonding between NH protons and anions and thereafter complete proton transfer from the complex backbone probably take place in the process. The deprotonation of the complex by specific anions and restoration to its original form by acid is also reversible. The responsiveness of the new compound is complex enough to imitate multiple sophisticated binary and ternary Boolean logic (BL) functions (NOT logic, combinational logic, traffic signal, set-reset flip-flop logic, and ternary NOR logic) by employing its spectral and redox outputs upon the action of suitable anions and acid in a proper sequence. Executing sensing investigations on altering the amount of the anions within a widespread range is often time-consuming and tedious. To overcome the lacuna, we implemented multiple soft computing techniques, viz., fuzzy logic (FL), artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), and decision tree (DT) regression, for the thorough analysis and prediction of the experimentally observed results. The outcomes obtained from different techniques were compared among themselves as well as with the experimental data and utilized for the proper modeling of the anion-sensing behaviors of the complex.
Collapse
Affiliation(s)
- Sohini Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata-700032, India.
| | - Anik Sahoo
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata-700032, India.
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata-700032, India.
| |
Collapse
|
8
|
Deb S, Sahoo A, Karmakar S, Baitalik S. Multi-channel anion sensing behaviour of a Ru(II)-bipyridine complex based on benzothiazolyl pyrazole ligand: experimental and implication of machine learning tools for data prediction. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
9
|
Sahoo A, Bhattacharya S, Jana S, Baitalik S. Neural network and decision tree-based machine learning tools to analyse the anion-responsive behaviours of emissive Ru( ii)–terpyridine complexes. Dalton Trans 2023; 52:97-108. [DOI: 10.1039/d2dt03289a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Artificial neural network, adaptive neuro-fuzzy inference and decision tree regression are implemented to analyse the anion-responsive behaviours of emissive Ru(ii)–terpyridine complexes.
Collapse
Affiliation(s)
- Anik Sahoo
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Sohini Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Subhamoy Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
10
|
Deb S, Sahoo A, Mondal P, Baitalik S. Analysis and prediction of anion- and temperature responsive behaviours of luminescent Ru(II)-terpyridine complexes by using Boolean, fuzzy logic, artificial neural network and adapted neuro fuzzy inference models. Dalton Trans 2022; 51:15601-15613. [PMID: 36169624 DOI: 10.1039/d2dt02611b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anion- and temperature responsive behaviors of three luminescent Ru(II)-terpyridine complexes are utilized here to demonstrate multiple Boolean (BL) and fuzzy logic (FL) operations. Taking advantage of the imidazole NH protons, anion-promoted alteration of the photophysical characteristics of the complexes was thoroughly investigated via absorption, and emission spectral and lifetime measurements. In their free state, the complexes display luminescence representing the "on-state", whereas quenching of luminescence is observed with anions demonstrating the "off-state". Likewise, lowering of temperature induces a substantial increase of luminescence and lifetime demonstrating the "on-state", while the increase of temperature induces a significant decrease of emission intensity and lifetime indicating the "off-state" and the process is reversible in both cases. The complexes thus can act as anion- and temperature-responsive molecular switches. The spectral signatures of the complexes under the influence of anions and temperature were employed to mimic multiple BL and FL functions. Performing very detailed sensing studies by varying the analyte concentration within a wide domain is very tedious, time-consuming and expensive. In order to overcome the lacuna, we implemented machine learning and soft computing tools such as artificial neural networks (ANNs), fuzzy-logic and adaptive neuro-fuzzy inference system (ANFIS) to predict the experimental anion sensing data of the complexes.
Collapse
Affiliation(s)
- Sourav Deb
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Priyam Mondal
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|