1
|
Lu H, Tong H, Gao B, Zhu J, Zhang S. Photothermal and robust supramolecular soft material crosslinked via dinuclear heterodentate coordination. MATERIALS HORIZONS 2025. [PMID: 39902560 DOI: 10.1039/d4mh01733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Efficient, green, and intrinsic solar-photothermal conversion elastomers are crucial for sustainable energy solutions. However, the traditional elastomer/solar-absorber composites suffer from poor compatibility, resulting in a low solar-photothermal efficiency and suboptimal mechanical properties. Herein, chitosan was selectively oxidized and blended with XNBR emulsion, followed by the incorporation of Fe2(SO4)3 and CuSO4 to create a dinuclear heterodentate coordination structure as a novel crosslinked network within the XNBR composites (XNBR/OCTS/Fe2(SO4)3/CuSO4). Remarkably, without sulfurization, the composite achieved a tensile strength of 12.7 MPa and an elongation at break of 955%. The carbonization of OCTS, along with the in situ reduction of Cu nanoparticles through interface reactions facilitated the XNBR/OCTS/Fe2(SO4)3/CuSO4 composite to possess a significantly enhanced intrinsic solar-photothermal conversion efficiency. Under 1 min infrared irradiation with 100% elongation, the localized temperature of the composite increased from 27 °C to 137 °C. For the first time, carbonized OCTS was utilized to significantly improve the photothermal conversion, deviating from its traditional role as a polysaccharide-based substrate. Additionally, XNBR/OCTS/Fe2(SO4)3/CuSO4 exhibited strong antibacterial activity against E. coli and S. aureus, and the XNBR matrix could be recovered through acidolysis of the OCTS owing to the dissociation of the dinuclear heterodentate coordination network. This approach provides a valuable framework for designing high-performance intrinsic solar-photothermal conversion elastomers using sustainable green resources.
Collapse
Affiliation(s)
- Huijuan Lu
- Institute of Emergent Elastomers, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Haohan Tong
- Institute of Emergent Elastomers, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Bingbing Gao
- Institute of Emergent Elastomers, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Jingyi Zhu
- State Key Laboratory of Metastable Materials Science and Technology, and School of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Shuidong Zhang
- Institute of Emergent Elastomers, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
2
|
Yin Y, Luo R, Wang W, Wang R, Jiang N, Chen P, Yu HJ, Bi SY, Shao F. A dysprosium(III)-based triple helical-like complex as a turn-on/off fluorescence sensor for Al(III) and 4,5-dimethyl-2-nitroaniline. Dalton Trans 2024; 53:5544-5552. [PMID: 38426260 DOI: 10.1039/d3dt03546h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A novel triple helical-like complex [Dy2K2L3(NO3)2]·3DMF (1) based on a designed Schiff base N'1,N'3-bis((E)-3-ethoxy-2-hydroxybenzylidene)-malonohydrazide (H4L) was synthesized with good chemical and thermal stabilities. Single-crystal X-ray structural analysis showed that 1 presents a tetranuclear triple helical-like structure via the coordination mode of Dy : K : L with 2 : 2 : 3 stoichiometry. Fluorescence measurements showed that 1@EtOH has excellent fluorescence turn-on/off response ability for aluminium ions and 4,5-dimethyl-2-nitroaniline (DMNA) with outstanding selectivity, sensitivity, and anti-interference ability. The calculated limit of detection (LOD) values for 1@EtOH to Al3+ and DMNA were found to be 0.53 and 3.33 μM, respectively. Density functional theory (DFT) calculation showed that the fluorescence response mechanism can be explained by the photoinduced electron transfer (PET) mechanism; meanwhile, the inner filter effect (IFE) of DMNA can also affect the emission of 1@EtOH.
Collapse
Affiliation(s)
- Yi Yin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Rong Luo
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Wen Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Rui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Nan Jiang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Peng Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Hai-Jun Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Shuang-Yu Bi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Feng Shao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
3
|
Mandal J, Dey A, Sarkar S, Khatun M, Ghorai P, Ray PP, Mahata P, Saha A. Chromone-Based Cd(II) Fluorescent Coordination Polymer Fabricated to Study Optoelectronic and Explosive Sensing Properties. Inorg Chem 2024; 63:4527-4544. [PMID: 38408204 DOI: 10.1021/acs.inorgchem.3c03646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Here, electrical conductivity and explosive sensing properties of multifunctional chromone-Cd(II)-based coordination polymers (CPs) (1-4) have been explored. The presence of different pseudohalide linkers, thiocyanate ions, and dicyanamide ions resulted in 1D and 3D architecture in the CPs. Thin film devices developed from CPs 1-4 (complex-based Schottky devices, CSD1, CSD2, CSD3, and CSD4, respectively) showed semiconductor behavior. Their conductivity values increased under photo illumination (1.37 × 10-5, 1.85 × 10-5, 1.61 × 10-5, and 2.01 × 10-5 S m-1 under dark conditions and 5.06 × 10-5, 8.78 × 10-5, 7.26 × 10-5, and 10.21 × 10-5 S m-1 under light). The nature of the I-V plots of these thin film devices under light irradiation and dark are nonlinear rectifying, which has been observed in Schottky barrier diodes (SBDs). All four CPs (1-4) exhibited highly selective fluorescence quenching-based sensing properties toward well-known explosives, 2,4-dinitrophenol (DNP) and 2,4,6-trinitrophenol (TNP). The limit of detection (LOD) values are 55, 28, 27, and 31 μM for TNP and 78, 44, 32, and 41 μM for DNP for complexes 1-4, respectively. A structure property correlation has been established to explain optoelectronic and explosive sensing properties.
Collapse
Affiliation(s)
- Jayanta Mandal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Arka Dey
- Department of Physics, Jadavpur University, Kolkata 700032, India
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sec. III, Salt Lake, Kolkata 700106, India
| | - Sourav Sarkar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Mohafuza Khatun
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Pravat Ghorai
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209, India
| | | | - Partha Mahata
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Amrita Saha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
4
|
La YT, Yan YJ, Li X, Zhang Y, Sun YX, Dong WK. Coordination-Driven Salamo-Salen-Salamo-Type Multinuclear Transition Metal(II) Complexes: Synthesis, Structure, Luminescence, Transformation of Configuration, and Nuclearity Induced by the Acetylacetone Anion. Inorg Chem 2023. [PMID: 37311103 DOI: 10.1021/acs.inorgchem.3c01149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A flexible polydentate Salamo-Salen-Salamo hybrid ligand H4L was designed and synthesized, which has rich pockets (salamo and salen pockets) so that it may have fascinating coordination patterns with transition metal(II) ions. Four multinuclear transition metal(II) complexes, novel butterfly-shaped homotetranuclear [Ni4(L)(μ1-OAc)2(μ1,3-OAc)2(H2O)0.5(CH3CH2OH)3.5]·4CH3CH2OH (1), helical homotrinuclear [Zn3(L)(μ1-OAc)2]·2CH3CH2OH (2), double-helical homotrinuclear [Cu2(H2L)2]·2CH3CN (3), and mononuclear [Ni(H2L)]·1.5CH3COCH3 (4), have been synthesized and characterized by single-crystal X-ray diffraction. The effects of different anions [OAc- and (O2C5H7)2-] on the complexation behavior of H4L with transition metal(II) ions were studied by UV-vis spectrophotometry. The fluorescent properties of the four complexes were studied with zebrafish, which are expected to be a potential light-emitting material. Ultimately, interaction region indicator (IRI) valuations, Hirshfeld surface analyses, density functional theory (DFT & TD-DFT), electrostatic potential analyses (ESP), and simulations were carried out to further demonstrate the weak interactions and electronic properties of the free ligand and its four complexes.
Collapse
Affiliation(s)
- Ya-Ting La
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yuan-Ji Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Xun Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| |
Collapse
|
5
|
Ghorai P, Hazra A, Mandal J, Malik S, Brandão P, Banerjee P, Saha A. Selective Low-Level Detection of a Perilous Nitroaromatic Compound Using Tailor-Made Cd(II)-Based Coordination Polymers: Study of Photophysical Properties and Effect of Functional Groups. Inorg Chem 2023; 62:98-113. [PMID: 36562764 DOI: 10.1021/acs.inorgchem.2c03027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three coordination polymers (CPs 1-3) are prepared based on diverse electron-donating properties and coordination arrangements of conjugated ligands. Interestingly, this is also reflected in their photophysical properties. The distinguishable high emissive nature of the luminescent coordination polymer shows its potentiality toward the detection of the perilous substance 2,4,6-trinitrophenol (TNP) or picric acid (PA). TNP has a higher propensity among explosive nitroaromatic compounds (epNACs) due to its significant π···π interaction with the free benzene moieties present in the CPs. Among CPs 1-3, 2 exhibits the highest sensitivity and selectivity toward TNP because of the most favorable π-π stacking with the conjugated organic linker. The calculated limit of detection (LOD) and corresponding quenching constant (KSV) from the Stern-Volmer (SV) plot for 1, 2, and 3 are found to be 0.68 μM and 7.49 × 104 M-1, 0.41 μM and 8.01 × 104 M-1, and 1.18 μM and 8.1 × 104 M-1, respectively. The fluorescence quenching mechanism is also highly influenced by their structure and coordination arrangement.
Collapse
Affiliation(s)
- Pravat Ghorai
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Abhijit Hazra
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jayanta Mandal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Suvamoy Malik
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrita Saha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|