1
|
Hu B, Dong G, Li X, Zhang J, Chen C, Zhou J, Kong D, Wu W. Rb 2InCl 5·H 2O doped with Te 4+ for fluorescence thermometry and coordinated water-related structural phase transformation. OPTICS LETTERS 2024; 49:6205-6208. [PMID: 39485448 DOI: 10.1364/ol.541142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Here, we synthesized Rb2InCl5·H2O with x Te4+ doping by the coprecipitation method, which converts the original nonluminance for pure Rb2InCl5·H2O into orange luminescence ascribed to Te4+ incorporation with an emission peak at 648 nm and a full width at half maximum of 142 nm (420.3 meV) at room temperature. The photoluminescence (PL) lifetime of Te4+-doped Rb2InCl5·H2O exhibits a strong temperature dependence, with a maximum absolute sensitivity (SA) of 12 × 10-3 K-1 at 260 K and a relative sensitivity (SR) of 3.5%K-1 at 300 K, demonstrating its capability for non-contact remote temperature measurement. Additionally, we capture the dynamic changes of coordinated water with temperature in Rb2InCl5·H2O through temperature-dependent Raman spectroscopy, analyze the resulting structural phase transformation associated with coordinated water, and investigate the reversibility of this phase transformation.
Collapse
|
2
|
Yao Y, Peng Y, Deng Z, Shen W, Li M, Zhou L, He R. Realizing Near-Unity Photoluminescence Efficiency in Antimony-Doped Indium-Based Halides Induced by Strong Electron-Phonon Coupling. Inorg Chem 2024; 63:20878-20887. [PMID: 39428632 DOI: 10.1021/acs.inorgchem.4c03666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Exploring a zero-dimensional (0D) hybrid halide with a large Stokes shift and efficient broad-band emission is highly desirable due to its enormous potential for solid-state lighting (SSL) application. However, it is still challenging to develop a highly emissive 0D hybrid halide with low toxicity and remarkable stability. Herein, we developed a novel indium-based metal halide A5In2Cl16·4H2O (A = doubly protonated 1,4-diaminobutane) whose inorganic octahedrons are completely isolated by the organic cations to form the 0D structure. Experimental and theoretical studies confirmed that Sb-doped A5In2Cl16·4H2O exhibits broad yellow emission with a photoluminescence quantum yield (PLQY) of up to 98%. The intense yellow emission can be attributed to the radiative recombination of triplet self-trapped excitons (STEs) in [SbCl6]3- octahedrons caused by the strong electron-phonon coupling. Benefiting from the excellent stability and photoluminescence performance, A5In2Cl16·4H2O:15%Sb was used as the yellow phosphor to prepare a white-light-emitting diode (WLED) device with a color rendering index of 87.8 and a luminous efficiency of up to 36.18 lm/W, demonstrating its potential in SSL applications. This work provides a guidance for developing environmentally friendly, efficient, and stable ultraviolet (UV)-excited broad-band emission materials.
Collapse
Affiliation(s)
- Yuan Yao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuqi Peng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhihao Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Lei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Golovnev NN, Gerasimova MA, Belash IM, Zolotov AO, Molokeev MS. Yellow-Orange Emission in Sb 3+-Doped Hexakis(thiocarbamidium) Hexabromoindium(III) Tribromide. Inorg Chem 2024; 63:9175-9183. [PMID: 38722294 DOI: 10.1021/acs.inorgchem.4c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
A luminescent zero-dimensional organic-inorganic hybrid indium halide (TUH)6[In1-xSbxBr6]Br3 (TU = thiourea, 0 ≤ x ≤ 0.0998) was synthesized via the solvothermal method. In structures, resolved by single-crystal X-ray diffraction, isolated distorted [InBr6]3- and [SbBr6]3- octahedra are linked to organic TUH+ cations by intermolecular N-H···Br and N-H···S hydrogen bonds. The crystals were characterized by elemental analysis, TG-DSC, powder X-ray diffraction, FTIR analysis, and steady-state absorption and photoluminescence spectroscopy. (TUH)6[In1-xSbxBr6]Br3 exhibits a broadband yellow-orange emission centered at 595-602 nm with a half-width of 141-149 nm (0.48-0.52 eV) and a large Stokes shift of 232-238 nm (1.33-1.35 eV). This emission can be attributed to the self-trapped exciton emission of triplet states of the octahedral anion [SbBr6]3- or [InBr6]3-. Two possible emission mechanisms were discussed. Doping with Sb3+ leads to a significant increase in photoluminescence quantum yield from 25.7 at x = 0 to 48.4% at x = 0.0065, when excited at 365 nm, indicating the potential use of (TUH)6[In1-xSbxBr6]Br3 compounds in the field of photonics.
Collapse
Affiliation(s)
| | | | | | | | - Maxim S Molokeev
- Siberian Federal University, Krasnoyarsk 660041, Russia
- Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
- Department of Physics, Far Eastern State Transport University, Serysheva str. 47, Khabarovsk 680021, Russia
| |
Collapse
|
4
|
Tian Y, Wei Q, Duan L, Peng C. Boosting Blue Self-Trapped Exciton Emission in All-Inorganic Zero-Dimensional Metal Halide Cs 2ZnCl 4 via Zirconium (IV) Doping. Molecules 2024; 29:1651. [PMID: 38611931 PMCID: PMC11013416 DOI: 10.3390/molecules29071651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Low-dimensional metal halides with efficient luminescence properties have received widespread attention recently. However, nontoxic and stable low-dimensional metal halides with efficient blue emission are rarely reported. We used a solvothermal synthesis method to synthesize tetravalent zirconium ion-doped all-inorganic zero-dimensional Cs2ZnCl4 for the first time. Bright blue emission in the range of 370 nm-700 nm with a emission maximum at 456 nm was observed in Zr4+:Cs2ZnCl4 accompanied by a large Stokes shift, which was due to self-trapped excitons (STEs) caused by the lattice vibrations of the twisted structure. Simultaneously, the PLQY of Zr4+:Cs2ZnCl4 achieve an impressive 89.67%, positioning it as a compelling contender for future applications in blue-light technology.
Collapse
Affiliation(s)
- Ye Tian
- School of Semiconductors and Physics, North University of China, Taiyuan 030051, China;
| | - Qilin Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lian Duan
- Traffic Information Engineering Institute, Guangxi Transport Vocational and Technical College, Nanning 530004, China;
| | - Chengyu Peng
- Traffic Information Engineering Institute, Guangxi Transport Vocational and Technical College, Nanning 530004, China;
| |
Collapse
|
5
|
Zhang G, Yang C, Wei Q, Long J, Shen X, Chen Y, Ke B, Liang W, Zhong X, Zou B. Sb 3+-Doped Indium-Based Metal Halide (Gua) 3InCl 6 with Efficient Yellow Emission. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3841-3852. [PMID: 38207013 DOI: 10.1021/acsami.3c15442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
In recent years, low-dimensional organic-inorganic hybrid metal halides (OIHMHs) have shown excellent photophysical properties due to their quantum structure, adjustable energy levels, and energy transfer between inorganic and organic components, which have attracted extensive attention from researchers. Herein, we synthesize a zero-dimensional (0D) OIHMH, Sb3+:(Gua)3InCl6, by introducing Sb3+ into (Gua)3InCl6, which undergoes a significant enhancement of the emission peak at 580 nm with the photoluminescence quantum yield (PLQY) boosted from 17.86 to 95.72% when excited at 340 nm. This boost in photoluminescence of the doped sample was studied by combining ultrafast femtosecond transient absorption, temperature-dependent photoluminescence (PL) spectra, and density functional theory (DFT) calculation, revealing the process of self-trapped exciton (STE) recombination to emit light at both Sb and In sites in this 0D structure simultaneously. This material with the lowest dark STE level at the In site for emission in the undoped sample can amazingly yield very strong emission in the doped sample, which has never been observed before. Finally, we tested its application in a photoelectric device. This work not only helps to gain a deeper understanding of the formation of STEs in In-based halides but also plays a certain guiding role in the design of new luminescent materials.
Collapse
Affiliation(s)
- Guolun Zhang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Chengzhi Yang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qilin Wei
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jiangjie Long
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xiaodong Shen
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yijun Chen
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Bao Ke
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Weizheng Liang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xianci Zhong
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Wu Y, Zhen XM, Zhang B. Antimony-Triggered Tunable White Light Emission in Lead-Free Zero-Dimensional Indium Halide with Ultrastable CCT of White Light Emitting Diodes. Inorg Chem 2023; 62:19573-19581. [PMID: 37970628 DOI: 10.1021/acs.inorgchem.3c02888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
A highly efficient and easily tunable luminescence is significant for solid-state luminescent (SSL) materials. However, achieving a photoluminescence quantum yield (PLQY) close to unity and tuning the emission remain challenging tasks. Metal doping strategies enable resolution of these issues. Herein, we report the preparation of a novel organic-inorganic lead-free indium-based metal halide hybrid (MP)3InCl6•EtOH (MP = C4H10ON) with a typical zero-dimension structure. When excited at 320 nm, (MP)3InCl6•EtOH exhibits a dual emission band at 420 and 600 nm, which originates from the organic cation [MP] and the [InCl6]3- octahedral unit. The photoluminescence can be significantly enhanced through Sb3+ doping, resulting in an increase in PLQY from 0.78% to near unity. Multiple emission color tunings have been achieved by regulating the Sb doping level and the radiation wavelength, resulting in a change in emission color from blue → white → orange. Optical characterizations reveal that the significantly enhanced emission centered at 600 nm can be attributed to more efficient absorption, closely associated with an additional 1S0 → 3P1 transition in the inorganic octahedron [In(Sb)Cl6]3- due to Sb3+ doping. With its excellent optical performance, a white light emitting diode (WLED) has been successfully fabricated by coating the mixture of (MP)3InCl6•EtOH:15%Sb3+ with blue phosphor BaMgAl10O17:Eu2+ onto a UV LED chip. The WLED device exhibits perfect white light emission with regard to the International Commission on Illumination (CIE) coordinates of (0.36, 0.34). Significantly, the WLED device maintains a stable correlated color temperature (CCT) range of 4119-4393 K and CIE coordinates (x: 0.37-0.34, y: 0.35-0.33) as the driven current varies from 20 to 200 mA, demonstrating outstanding stability across different power levels. This work not only presents a novel system for achieving remarkably enhanced luminescent performance and tuning emission bands in 0D metal halides but also represents a significant step toward achieving resistance to color drifting for stable WLEDs.
Collapse
Affiliation(s)
- Yue Wu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiao-Meng Zhen
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Bo Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
7
|
Wang N, Hao S, Xiong Y, Li M, Liu K, Wolverton C, Wang Y, Zhao J, Liu Q. Solution-Obtained (NH 4) 3In 0.95Sb 0.05Cl 6 with High External Photoluminescence Quantum Yield and Excellent Antiquenching Properties. Inorg Chem 2023; 62:17940-17945. [PMID: 37844091 DOI: 10.1021/acs.inorgchem.3c02821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The efficient broad-band emission from low-dimensional metal halides has garnered significant interest. However, most of these materials exhibit poor stability at the operating temperature of light-emitting diodes. In this study, using the solution method (temperature lower than 90 °C), a new compound (NH4)3In0.95Sb0.05Cl6 was obtained with the structure in the Pnma space group featuring unit-cell parameters of a = 12.3871(4) Å, b = 24.9895(9) Å, and c = 7.7844(3) Å. (NH4)3In0.95Sb0.05Cl6 can be prepared by doping (NH4)2InCl5·H2O when the Sb3+ feeding ratio is in the range of 30-80%. Thermal analysis reveals that (NH4)3In0.95Sb0.05Cl6 is stable up to 320 °C. (NH4)3In0.95Sb0.05Cl6 exhibits broad-band yellow-white emission with extremely high internal and external photoluminescence quantum yields of 93 and 77%, respectively. Interestingly, (NH4)3In0.95Sb0.05Cl6 displays remarkable resistance to thermal quenching, retaining 83% of its initial photoluminescence intensity at 80 °C. A white light-emitting diode is fabricated by combining (NH4)3In0.95Sb0.05Cl6 with a commercial phosphor, and a high color rendering of 92.8 was obtained. This work presents an environmentally friendly, efficient, stable UV-excited broad-band emission material for potential solid-state lighting applications.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of HVDC, Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, Guangdong, China
- The Beijing Municipal of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shiqiang Hao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Xiong
- State Key Laboratory of HVDC, Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, Guangdong, China
| | - Mingyang Li
- The Beijing Municipal of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The Beijing Municipal of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Christopher Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yonggang Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jing Zhao
- The Beijing Municipal of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|