1
|
Pandey A, Chernyshev A, Panthi YR, Zedník J, Šturcová A, Konefał M, Kočková O, Foulger SH, Vohlídal J, Pfleger J. Synapse-Mimicking Memristors Based on 3,6-Di( tpy)-9-Phenylcarbazole Unimer and Its Copolymer with Cobalt(II) Ions. Polymers (Basel) 2024; 16:542. [PMID: 38399920 PMCID: PMC10892321 DOI: 10.3390/polym16040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The title compound, unimer U (tpy stands for 2,2':6',2″-terpyridin-4'-yl end-group), by itself shows the memristor effect with a retention time of 18 h and persistence of 11 h. Its coordination copolymer with Co(II) ions, [CoU]n, exhibits multimodal resistance changes similar to the synaptic responses observed in biological systems. More than 320 cycles of potentiation and depression measured in continuous sequence occurred without observing a significant current change, confirming the operational stability and reproducibility of the device based on the [CoU]n polymer. The synaptic effect of a device with an indium tin oxide (ITO)/[CoU]n/top-electrode (TE) configuration is more pronounced for the device with TE = Au compared to devices with TE = Al or Ga. However, the latter TEs provide a cost-effective approach without any significant compromise in device plasticity. The detected changes in the synaptic weight, about 12% for pair-pulse facilitation and 80% for its depression, together with a millisecond trigger and reading pulses that decay exponentially on the time scale typical of neurosynapses, justify the device's ability to learn and memorize. These properties offer potential applications in neuromorphic computation and brain-inspired synaptic devices.
Collapse
Affiliation(s)
- Ambika Pandey
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic; (A.P.); (Y.R.P.)
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic; (A.Š.); (M.K.); (O.K.)
| | - Andrei Chernyshev
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (A.C.); (J.Z.)
| | - Yadu Ram Panthi
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic; (A.P.); (Y.R.P.)
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic; (A.Š.); (M.K.); (O.K.)
| | - Jiří Zedník
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (A.C.); (J.Z.)
| | - Adriana Šturcová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic; (A.Š.); (M.K.); (O.K.)
| | - Magdalena Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic; (A.Š.); (M.K.); (O.K.)
| | - Olga Kočková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic; (A.Š.); (M.K.); (O.K.)
| | - Stephen H. Foulger
- Center for Optical Materials Science and Engineering Technology (COMSET), Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA;
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Jiří Vohlídal
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (A.C.); (J.Z.)
| | - Jiří Pfleger
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic; (A.Š.); (M.K.); (O.K.)
| |
Collapse
|
2
|
Kaushik K, Mehta S, Das M, Ghosh S, Kamilya S, Mondal A. Stimuli-responsive magnetic materials: impact of spin and electronic modulation. Chem Commun (Camb) 2023; 59:13107-13124. [PMID: 37846652 DOI: 10.1039/d3cc04268e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Addressing molecular bistability as a function of external stimuli, especially in spin-crossover (SCO) and metal-to-metal electron transfer (MMET) systems, has seen a surge of interest in the field of molecule-based magnetic materials due to their enormous potential in various technological applications such as molecular spintronics, memory and electronic devices, switches, sensors, and many more. The fine-tuning of molecular components allow the design and synthesis of materials with tailored properties for these vast applications. In this Feature Article, we discuss a part of our research work into this broad topic, pertaining to the recent discoveries in the field of switchable molecular magnetic materials based on SCO and MMET systems, along with some historical background of the area and related accomplishments made in recent years.
Collapse
Affiliation(s)
- Krishna Kaushik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Mayurika Das
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sounak Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
3
|
Sarkar A, Hermes MR, Cramer CJ, Anderson JS, Gagliardi L. Understanding Antiferromagnetic and Ligand Field Effects on Spin Crossover in a Triple-Decker Dimeric Cr(II) Complex. J Am Chem Soc 2023; 145:22394-22402. [PMID: 37788432 DOI: 10.1021/jacs.3c05277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Two possible explanations for the temperature dependence of spin-crossover (SCO) behavior in the dimeric triple-decker Cr(II) complex ([(η5-C5Me5)Cr(μ2:η5-P5)Cr(η5-C5Me5)]+) have been offered. One invokes variations in antiferromagnetic interactions between the two Cr(II) ions, whereas the other posits the development of a strong ligand-field effect favoring the low-spin ground state. We perform multireference electronic structure calculations based on the multiconfiguration pair-density functional theory to resolve these effects. We find quintet, triplet, and singlet electronic ground states, respectively, for the experimental geometries at high, intermediate, and low temperatures. The ground-state transition from quintet to triplet at an intermediate temperature derives from increased antiferromagnetic interactions between the two Cr(II) ions. By contrast, the ground-state transition from triplet to singlet at low temperature can be attributed to increased ligand-field effects, which dominate with continued variations in antiferromagnetic coupling. This study provides quantitative detail for the degree to which these two effects can act in concert for the observed SCO behavior in this complex and others subject to temperature-dependent variations in geometry.
Collapse
Affiliation(s)
- Arup Sarkar
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew R Hermes
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Christopher J Cramer
- UL Research Institutes, 333 Pfingsten Road, Northbrook, Illinois 60062, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Director of the Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637,United States
| |
Collapse
|
4
|
Sun YC, Chen FL, Wang KJ, Zhao Y, Wei HY, Wang XY. Hysteretic Spin Crossover with High Transition Temperatures in Two Cobalt(II) Complexes. Inorg Chem 2023; 62:14863-14872. [PMID: 37676750 DOI: 10.1021/acs.inorgchem.3c01188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Cooperative spin crossover transitions with thermal hysteresis loops are rarely observed in cobalt(II) complexes. Herein, two new mononuclear cobalt(II) complexes with hysteretic spin crossover at relatively high temperatures (from 320 to 400 K), namely, [Co(terpy-CH2OH)2]·X2 (terpy-CH2OH = 4'-(hydroxymethyl)-2,2';6',2″-terpyridine, X = SCN-(1) and SeCN- (2)), have been synthesized and characterized structurally and magnetically. Both compounds are mononuclear CoII complexes with two chelating terpy-CH2OH ligands. Magnetic measurements revealed the existence of the hysteretic SCO transitions for both complexes. For compound 1, a one-step transition with T1/2↑= 334.5 K was observed upon heating, while a two-step transition is observed upon cooling with T1/2↓(1) = 329.3 K and T1/2↓(2) = 324.1 K (at a temperature sweep rate of 5 K/min). As for compound 2, a hysteresis loop with a width of 5 K (T1/2↓ = 391.6 K and T1/2↑ = 396.6 K, at a sweep rate of 5 K/min) can be observed. Thanks to the absence of the crystallized lattice solvents, their single crystals are stable enough at high temperatures for the structure determination at both spin states, which reveals that the hysteretic SCO transitions in both complexes originate from the crystallographic phase transitions involving a thermally induced order-disorder transition of the dangling -CH2OH groups in the ligand. This work shows that the modification of the terpy ligand has an important effect on the magnetic properties of the resulting cobalt(II) complexes.
Collapse
Affiliation(s)
- Yu-Chen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng-Li Chen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang-Jie Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Yan Wei
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Bagchi S, Kamilya S, Mehta S, Mandal S, Bandyopadhyay A, Narayan A, Ghosh S, Mondal A. Spin-state switching: chemical modulation and the impact of intermolecular interactions in manganese(III) complexes. Dalton Trans 2023; 52:11335-11348. [PMID: 37530419 DOI: 10.1039/d3dt01707a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A series of mononuclear manganese(III) complexes [Mn(X-sal2-323)](ReO4) (X = 5 Cl, 1; X = 5 Br, 2; X = 3,5 Cl, 3; X = 3,5 Br, 4; and X = 5 NO2, 5), containing hexadentate ligands prepared using the condensation of N,N'-bis(3-aminopropyl)ethylenediamine and 5- or 3,5-substituted salicylaldehyde, has been synthesized. Variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, electrochemical, and spectroelectrochemical analyses, and theoretical calculations have been used to explore the role of various ligand substituents in the spin-state switching behavior of the prepared manganese(III) complexes. All five complexes consist of an analogous distorted octahedral monocationic MnN4O2 surrounding offered by the flexible hexadentate ligand and ReO4- as the counter anion. However, a disordered water molecule was detected in complex 4. Complexes 1 (X = 5 Cl) and 5 (X = 5 NO2) show gradual and complete spin-state switching between the high-spin (HS) (S = 2) and the low-spin (LS) (S = 1) state with T1/2 values of 146 and 115 K respectively, while an abrupt and complete transition at 95 K was observed for complex 2 (X = 5 Br). Alternatively, complex 3 (X = 3, 5 Cl) exhibits an incomplete and sharp transition between the HS and LS states at 104 K, while complex 4 (X = 3, 5 Br) (desolvated) remains almost LS up to 300 K and then displays gradual and incomplete SCO at a higher temperature. The nature of the spin-state switch and transition temperature suggest that the structural effect (cooperativity) plays a more significant role in comparison with the electronic effect coming from various substituents (Cl, Br, and NO2), which is further supported by the detailed structural, electrochemical, and theoretical studies.
Collapse
Affiliation(s)
- Sukanya Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Subhankar Mandal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Arka Bandyopadhyay
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Awadhesh Narayan
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|