1
|
Grattoni E, Travagin F, Kálmán F, Baranyai Z, Negri R, Carniato F, Giovenzana GB, Platas-Iglesias C, Botta M. Evaluation of structurally related acyclic ligands OBETA, EHDTA, and EGTA for stable Mn 2+ complex formation. Dalton Trans 2024; 54:376-388. [PMID: 39545871 DOI: 10.1039/d4dt02761b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
In recent years, significant research efforts have been dedicated to finding efficient and safe alternatives to the currently used gadolinium (Gd)-based MRI contrast agents. Among the most explored alternatives are paramagnetic chelates of the Earth-abundant Mn2+, which form a prominent class of metal complexes. The design of Mn2+ complexes with enhanced relaxation properties and improved safety profiles hinges on a delicate balance between thermodynamic and kinetic stability, as well as the presence of coordinated water molecules. In this study, we present a comprehensive investigation into the coordination chemistry of three structurally related polyetheraminocarboxylic chelating agents. Our aim is to elucidate the structural features, paramagnetic properties, and thermodynamic and kinetic inertness of the corresponding Mn2+ complexes. The most significant finding is the considerable difference in the dissociation rates of the complexes, with the octadentate EGTA complex being the most labile. The observed dissociation rates correlate well with the nitrogen inversion dynamics, as assessed through NMR spectral analysis of the analogous Zn2+ complexes.
Collapse
Affiliation(s)
- Elena Grattoni
- Dip. di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale Europa 1, 34127 Trieste, TS, Italy
| | - Fabio Travagin
- Dip. di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Ferenc Kálmán
- Dep. of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - Zsolt Baranyai
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, ed. Q - S.S. 14 Km, 163.5-34149 Basovizza, TS, Italy
| | - Roberto Negri
- Dip. di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
- ITIS "A. Volta", Spalto Marengo 42, 15121 Alessandria, Italy
| | - Fabio Carniato
- Dip. di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy.
| | - Giovanni B Giovenzana
- Dip. di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain
| | - Mauro Botta
- Dip. di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
2
|
Hierlmeier I, Marino N, Schreck MV, Schneider L, Maus S, Barrett K, Kretowicz M, Engle JW, Pierri G, Ezziddin S, Bartholomä MD. Radiochemistry and Complex Formation of the Cyclen-Derived Chelator DOTI-Me with Mn 2+, Cu 2+, Zn 2+, Ga 3+, In 3+, Tb 3+, and Lu 3. Inorg Chem 2024; 63:19468-19481. [PMID: 39352711 DOI: 10.1021/acs.inorgchem.4c03571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In this work, we describe the complex formation and radiochemistry of the cyclen-based chelator DOTI-Me bearing four methylimidazole arms. Radiolabeling properties were evaluated for 52gMn, 64Cu, 68Ga, 111In, 161Tb, and 177Lu, and DOTI-Me showed distinct differences to the structurally related H4DOTA. While radiochemical conversions (RCCs) for 52gMn and 111In were comparable to those of H4DOTA, DOTI-Me was not suited for 68Ga. Conversely, quantitative RCCs were achieved for 64Cu at ambient temperature, while elevated temperatures were required for complexation with H4DOTA. For 161Tb and 177Lu, good but not quantitative RCCs were obtained with DOTI-Me. With the exemption of 68Ga3+, radiolabeled complexes showed high stability in ligand challenge experiments and in human serum. X-ray analysis of the nonradioactive complexes revealed the formation of 8-coordinate Mn2+ and In3+ DOTI-Me complexes. Cu2+ adopted a unique distorted square-pyramidal 2 + 3 with the neutral DOTI-Me ligand and a Jahn-Teller distorted 4 + 2 coordination geometry for the diprotonated H2DOTI-Me2+ cation, respectively. For Zn2+, the complex with HDOTI-Me+ showed a distorted 4 + 3 pentagonal bipyramidal geometry. Summarizing, the ligand DOTI-Me may be an interesting alternative to H4DOTA for 52gMn, 64Cu, 111In, 161Tb, and 177Lu, covering diagnostic as well as therapeutic radionuclides. Further studies of targeted radiopharmaceuticals based on the DOTI-Me scaffold in combination with the set of radiometals presented herein are thus warranted.
Collapse
Affiliation(s)
- Ina Hierlmeier
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Nadia Marino
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Moritz-Valentin Schreck
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Lukas Schneider
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Stephan Maus
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Kendall Barrett
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Margarita Kretowicz
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Giovanni Pierri
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Samer Ezziddin
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Mark D Bartholomä
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| |
Collapse
|
3
|
Harriswangler C, Omweri JM, Saini S, Valencia L, Esteban-Gómez D, Ranga M, Guidolin N, Baranyai Z, Lapi SE, Platas-Iglesias C. Improving the In Vivo Stability of [ 52Mn]Mn(II) Complexes with 18-Membered Macrocyclic Chelators for PET Imaging. J Med Chem 2024; 67:11242-11253. [PMID: 38935616 PMCID: PMC11247486 DOI: 10.1021/acs.jmedchem.4c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
We report the [natMn/52Mn]Mn(II) complexes of the macrocyclic chelators PYAN [3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane] and CHXPYAN [(41R,42R,101R,102R)-3,5,9,11-tetraaza-1,7(2,6)-dipyridina-4,10(1,2)-dicyclohexanacyclododecaphane]. The X-ray crystal structures of Mn-PYAN and Mn-CHXPYAN evidence distorted octahedral geometries through coordination of the nitrogen atoms of the macrocycles. Cyclic voltammetry studies evidence reversible processes due to the Mn(II)/Mn(III) pair, indicating that the complexes are resistant to oxidation. CHXPYAN forms a more thermodynamically stable and kinetically inert Mn(II) complex than PYAN. Radiochemical studies with the radioactive isotope manganese-52 (52Mn, t1/2 = 5.6 days) evidenced better radiochemical yields for CHXPYAN than for PYAN. Both [52Mn]Mn(II) complexes remained stable in mouse and human serum, so in vivo stability studies were carried out. Positron emission tomography/computed tomography scans and biodistribution assays indicated that [52Mn]Mn-PYAN has a distribution pattern similar to that of [52Mn]MnCl2, showing persistent radioactivity accumulation in the kidneys. Conversely, [52Mn]Mn-CHXPYAN remained stable in vivo, clearing quickly from the liver and kidneys.
Collapse
Affiliation(s)
- Charlene Harriswangler
- Universidade da Coruña, Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, A Coruña 15071, Galicia, Spain
| | - James M Omweri
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Shefali Saini
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Laura Valencia
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende 36310, Pontevedra, Spain
| | - David Esteban-Gómez
- Universidade da Coruña, Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, A Coruña 15071, Galicia, Spain
| | - Madalina Ranga
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, ed. Q─S.S. 14 Km 163,5, 34149 Basovizza, TS, Italy
| | - Nicol Guidolin
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, ed. Q─S.S. 14 Km 163,5, 34149 Basovizza, TS, Italy
| | - Zsolt Baranyai
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, ed. Q─S.S. 14 Km 163,5, 34149 Basovizza, TS, Italy
| | - Suzanne E Lapi
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, A Coruña 15071, Galicia, Spain
| |
Collapse
|
4
|
Martinelli J, Romano E, Laczovics A, Horváth D, Grattoni E, Baranyai Z, Tei L. Improving the Stability and Kinetic Inertness of Mn(II) Complexes by Increasing the Bridge Length in Bicyclic CDTA-Like Ligands. Chemistry 2024; 30:e202400570. [PMID: 38597334 DOI: 10.1002/chem.202400570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/11/2024]
Abstract
Kinetic inertness of Mn(II)-based MRI contrast agents can be improved by increasing the rigidity of the polydentate ligand that tightly coordinate the metal ion. Taking inspiration from the remarkable increase in kinetic inertness of [Mn(CDTA)]2- compared to [Mn(EDTA)]2- due to the cyclohexyl backbone rigidity, we devised that bicyclic ligands would further improve the kinetic inertness of the Mn(II) complexes. The length of the alkyl bridge on the cyclohexane ring was varied from methylene (BCH-DTA), ethylene (BCO-DTA) to propylene (BCN-DTA) to evaluate the influence of the different trans-diaminotetraacetate ligands on relaxometric, thermodynamic and kinetic properties of the Mn(II) complexes. 1H and 17O NMR relaxometric studies showed a slight increase in relaxivity and a faster water exchange rate in these Mn(II)-complexes with respect to [Mn(CDTA)]2-. Solution studies revealed that the conditional stability (pMn) and dissociation half-life (t1/2) at pH 7.4 follow the order [Mn(BCH-DTA)]2-<[Mn(BCO-DTA)]2-<[Mn(BCN-DTA)]2- highlighting the effect of the bridge length on the overall stability of the Mn(II) complexes. Remarkably, [Mn(BCN-DTA)]2- shows an improved pMn value and a 7-times higher kinetic inertness than [Mn(CDTA)]2-. NMR studies on the Zn(II) analogues confirm the rigidity of the bicyclic complexes with an isomerization process at >313 K for the smaller bridged complex [Zn(BCH-DTA)]2-.
Collapse
Affiliation(s)
- Jonathan Martinelli
- Department of Science and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
- Department of Health Sciences (DISSAL), Università di Genova, Via A. Pastore 1, 16132, Genova, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genova, Italy
| | - Elisabetta Romano
- Department of Science and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
| | - Attila Laczovics
- Faculty of Medicine, Institute of Medical Imaging, University of Debrecen, Nagyerdei körút 98, 4032, Debrecen, Hungary
| | - David Horváth
- Faculty of Science and Technology, Department of Physical Chemistry, Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1, 4010, Debrecen, Hungary
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, 34149, Basovizza (TS), Italy
| | - Elena Grattoni
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, 34149, Basovizza (TS), Italy
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale Europa 1, 34127, Trieste (TS), Italy
| | - Zsolt Baranyai
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, 34149, Basovizza (TS), Italy
- Faculty of Science and Technology, Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1, 4010, Debrecen, Hungary
| | - Lorenzo Tei
- Department of Science and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
5
|
Abstract
ABSTRACT Recent safety concerns surrounding the use of gadolinium-based contrast agents (GBCAs) have spurred research into identifying alternatives to GBCAs for use with magnetic resonance imaging. This review summarizes the molecular and pharmaceutical properties of a GBCA replacement and how these may be achieved. Complexes based on high-spin, divalent manganese (Mn 2+ ) have shown promise as general purpose and liver-specific contrast agents. A detailed description of the complex Mn-PyC3A is provided, describing its physicochemical properties, its behavior in different animal models, and how it compares with GBCAs. The review points out that, although there are parallels with GBCAs in how the chemical properties of Mn 2+ complexes can predict in vivo behavior, there are also marked differences between Mn 2+ complexes and GBCAs.
Collapse
Affiliation(s)
- Peter Caravan
- From the Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Uzal-Varela R, Rodríguez-Rodríguez A, Lalli D, Valencia L, Maneiro M, Botta M, Iglesias E, Esteban-Gómez D, Angelovski G, Platas-Iglesias C. Endeavor toward Redox-Responsive Transition Metal Contrast Agents Based on the Cross-Bridge Cyclam Platform. Inorg Chem 2024; 63:1575-1588. [PMID: 38198518 PMCID: PMC10806912 DOI: 10.1021/acs.inorgchem.3c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
We present the synthesis and characterization of a series of Mn(III), Co(III), and Ni(II) complexes with cross-bridge cyclam derivatives (CB-cyclam = 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane) containing acetamide or acetic acid pendant arms. The X-ray structures of [Ni(CB-TE2AM)]Cl2·2H2O and [Mn(CB-TE1AM)(OH)](PF6)2 evidence the octahedral coordination of the ligands around the Ni(II) and Mn(III) metal ions, with a terminal hydroxide ligand being coordinated to Mn(III). Cyclic voltammetry studies on solutions of the [Mn(CB-TE1AM)(OH)]2+ and [Mn(CB-TE1A)(OH)]+ complexes (0.15 M NaCl) show an intricate redox behavior with waves due to the MnIII/MnIV and MnII/MnIII pairs. The Co(III) and Ni(II) complexes with CB-TE2A and CB-TE2AM show quasi-reversible features due to the CoIII/CoII or NiII/NiIII pairs. The [Co(CB-TE2AM)]3+ complex is readily reduced by dithionite in aqueous solution, as evidenced by 1H NMR studies, but does not react with ascorbate. The [Mn(CB-TE1A)(OH)]+ complex is however reduced very quickly by ascorbate following a simple kinetic scheme (k0 = k1[AH-], where [AH-] is the ascorbate concentration and k1 = 628 ± 7 M-1 s-1). The reduction of the Mn(III) complex to Mn(II) by ascorbate provokes complex dissociation, as demonstrated by 1H nuclear magnetic relaxation dispersion studies. The [Ni(CB-TE2AM)]2+ complex shows significant chemical exchange saturation transfer effects upon saturation of the amide proton signals at 71 and 3 ppm with respect to the bulk water signal.
Collapse
Affiliation(s)
- Rocío Uzal-Varela
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - Aurora Rodríguez-Rodríguez
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Magnetic Resonance Platform
(PRISMA-UPO), Universitá del Piemonte
Orientale, Viale T. Michel
11, Alessandria 15121, Italy
| | - Laura Valencia
- Departamento
de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende 36310, Pontevedra, Spain
| | - Marcelino Maneiro
- Departamento
de Química Inorgánica, Facultade de Ciencias, Campus
Terra, Universidade de Santiago de Compostela, Lugo 27002, Galicia, Spain
| | - Mauro Botta
- Dipartimento
di Scienze e Innovazione Tecnologica, Magnetic Resonance Platform
(PRISMA-UPO), Universitá del Piemonte
Orientale, Viale T. Michel
11, Alessandria 15121, Italy
| | - Emilia Iglesias
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - David Esteban-Gómez
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - Goran Angelovski
- Laboratory
of Molecular and Cellular Neuroimaging, International Center for Primate
Brain Research (ICPBR), Center for Excellence in Brain Science and
Intelligence Technology (CEBSIT), Chinese
Academy of Sciences (CAS), Shanghai 201602, PR China
| | - Carlos Platas-Iglesias
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| |
Collapse
|
7
|
Keot N, Sarma M. Probing the dynamic behaviour and magnetic identification of seven coordinated Mn(II) complexes: a combined AIMD and multi-reference approach. Phys Chem Chem Phys 2023; 25:31165-31177. [PMID: 37953737 DOI: 10.1039/d3cp04072k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We present an in-depth solution phase dynamics of rare seven coordinated pentagonal bipyramidal Mn(II) complexes, together with their binding affinity anticipated using ab initio molecular dynamics (AIMD) simulations and density functional theory (DFT). Moreover, the simulations at different temperatures (25 °C and 90 °C) interpret the rigidity and stability of the ligands with Mn(II) ions. An intuitive approach for modulating the easy plane magnetic anisotropy of the mononuclear Mn(II) complex has been revealed by this work. In this regard, we have performed an extensive theoretical study based on the ab initio CASSCF/NEVPT2 method, exhibiting the presence of an easy plane magnetic anisotropy with a positive value of axial zero-field splitting (ZFS) parameter D. The complex's magnetic properties and electronic relaxation reveal that the rhombic ZFS term (E) can be modulated as the symmetry around the Mn(II) ion varies. The magnitude of the D-value increased with a more symmetrical equatorial ligand as found in the order of [Mn(pydpa)(H2O)] > [Mn(cbda)(H2O)]- > [Mn(dpaaa)(H2O)]- > [Mn(dpasam)(H2O)]-. Furthermore, we found that substituting the equatorial oxygen atom with heavier S and Se-donor atoms switches the sign of magnetic anisotropy for the Mn(II) complexes. The magnitude of the D-value increased when the energy levels of the ground state (GS) and the first excited state (ES) decreased. The observed magneto-structural correlation reveals that shortening the distance of the axial water molecule (Mn-O(w)) increases the D-value by an order of magnitude for the symmetrical [Mn(pydpa)(H2O)] complex. Overall, the combined analysis of solution phase dynamics of Mn(II) complexes and their magnetic characterization opens up new avenues in coordination chemistry, molecular magnetism, spin-crossover materials, and catalysis.
Collapse
Affiliation(s)
- Niharika Keot
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
8
|
Zhang J, Dai L, He L, Bhattarai A, Chan CM, Tai WCS, Vardhanabhuti V, Law GL. Design and synthesis of chiral DOTA-based MRI contrast agents with remarkable relaxivities. Commun Chem 2023; 6:251. [PMID: 37973896 PMCID: PMC10654417 DOI: 10.1038/s42004-023-01050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Due to the adverse effects of de-metallation in past concerning FDA-approved gadolinium-based contrast agents (GBCAs), researchers have been focusing on developing safer and more efficient alternatives that could avoid toxicity caused by free gadolinium ions. Herein, two chiral GBCAs, Gd-LS with sulfonate groups and Gd-T with hydroxyl groups, are reported as potential candidates for magnetic reasonance imaging (MRI). The r1 relaxivities of TSAP, SAP isomers of Gd-LS and SAP isomer of Gd-T at 1.4 T, 37 °C in water are 7.4 mM-1s-1, 14.5 mM-1s-1 and 5.2 mM-1s-1, respectively. Results show that the hydrophilic functional groups introduced to the chiral macrocyclic scaffold of Gd-T and Gd-LS both give constructive influences on the second-sphere relaxivity and enhance the overall r1 value. Both cases indicate that the design of GBCAs should also focus on the optimal window in Solomon-Bloembergen-Morgan (SBM) theory and the effects caused by the second-sphere and outer-sphere relaxivity.
Collapse
Affiliation(s)
- Junhui Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Lixiong Dai
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Li He
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Abhisek Bhattarai
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chun-Ming Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - William Chi-Shing Tai
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Varut Vardhanabhuti
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ga-Lai Law
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
9
|
Henoumont C, Devreux M, Laurent S. Mn-Based MRI Contrast Agents: An Overview. Molecules 2023; 28:7275. [PMID: 37959694 PMCID: PMC10648041 DOI: 10.3390/molecules28217275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
MRI contrast agents are required in the clinic to detect some pathologies, such as cancers. Nevertheless, at the moment, only small extracellular and non-specific gadolinium complexes are available for clinicians. Moreover, safety issues have recently emerged concerning the use of gadolinium complexes; hence, alternatives are urgently needed. Manganese-based MRI contrast agents could be one of these alternatives and increasing numbers of studies are available in the literature. This review aims at synthesizing all the research, from small Mn complexes to nanoparticular agents, including theranostic agents, to highlight all the efforts already made by the scientific community to obtain highly efficient agents but also evidence of the weaknesses of the developed systems.
Collapse
Affiliation(s)
- Céline Henoumont
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Marie Devreux
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
- Center for Microscopy and Molecular Imaging (CMMI), 8 Rue Adrienne Boland, 6041 Gosselies, Belgium
| |
Collapse
|