1
|
Liu J, Li T, Wang Q, Liu H, Wu J, Sui Y, Li H, Tang P, Wang Y. Bifunctional PdMoPt trimetallene boosts alcohol-water electrolysis. Chem Sci 2024:d4sc04764h. [PMID: 39323526 PMCID: PMC11417933 DOI: 10.1039/d4sc04764h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
Substituting oxygen evolution with alcohol oxidation is crucial for enhancing the cathodic hydrogen evolution reaction (HER) at low voltages. However, the development of high-performance bifunctional catalysts remains a challenge. In this study, an ultrathin and porous PdMoPt trimetallene is developed using a wet-chemical strategy. The synergetic effect between alloying metals regulates the adsorption energy of reaction intermediates, resulting in exceptional activity and stability for the electrooxidation of various alcohols. Specifically, the mass activity of PdMoPt trimetallene toward the electrooxidation of methanol, ethylene glycol, and glycerol reaches 6.13, 5.5, and 4.37 A mgPd+Pt -1, respectively. Moreover, the catalyst demonstrates outstanding HER activity, requiring only a 39 mV overpotential to achieve 10 mA cm-2. By employing PdMoPt trimetallene as both the anode and cathode catalyst, we established an alcohol-water hybrid electrolysis system, significantly reducing the voltage requirements for hydrogen production. This work presents a promising avenue for the development of bifunctional catalysts for energy-efficient hydrogen production.
Collapse
Affiliation(s)
- Junfeng Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Tong Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Qiuxia Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Haiting Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Jingjing Wu
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS) Shanghai 200050 China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences Shanghai 200050 China
| | - Yanping Sui
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS) Shanghai 200050 China
| | - Huaming Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Pengyi Tang
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS) Shanghai 200050 China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences Shanghai 200050 China
- School of Graduate Study, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yong Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| |
Collapse
|
2
|
Li T, Wang Q, Wu J, Sui Y, Tang P, Liu H, Zhang W, Li H, Wang Y, Cabot A, Liu J. Strain and Shell Thickness Engineering in Pd 3 Pb@Pt Bifunctional Electrocatalyst for Ethanol Upgrading Coupled with Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306178. [PMID: 37800605 DOI: 10.1002/smll.202306178] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Indexed: 10/07/2023]
Abstract
The ethanol oxidation reaction (EOR) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts for both EOR and hydrogen evolution reaction (HER) is a major challenge. Herein, the synthesis of Pd3 Pb@Pt core-shell nanocubes with controlled shell thickness by Pt-seeded epitaxial growth on intermetallic Pd3 Pb cores is reported. The lattice mismatch between the Pd3 Pb core and the Pt shell leads to the expansion of the Pt lattice. The synergistic effects between the tensile strain and the core-shell structures result in excellent electrocatalytic performance of Pd3 Pb@Pt catalysts for both EOR and HER. In particular, Pd3 Pb@Pt with three Pt atomic layers shows a mass activity of 8.60 A mg-1 Pd+Pt for ethanol upgrading to acetic acid and close to 100% of Faradic efficiency for HER. An EOR/HER electrolysis system is assembled using Pd3 Pb@Pt for both the anode and cathode, and it is shown that low cell voltage of 0.75 V is required to reach a current density of 10 mA cm-2 . The present work offers a promising strategy for the development of bifunctional catalysts for hybrid electrocatalytic reactions and beyond.
Collapse
Affiliation(s)
- Tong Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Qiuxia Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jingjing Wu
- State Key Laboratory of Information Functional Materials, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai, 200050, China
- 52020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yanping Sui
- State Key Laboratory of Information Functional Materials, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai, 200050, China
| | - Pengyi Tang
- State Key Laboratory of Information Functional Materials, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai, 200050, China
- 52020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiting Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Wenjie Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Huaming Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yong Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Junfeng Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
3
|
Li T, Wang Q, Zhang W, Li H, Wang Y, Liu J. Length-tunable Pd 2Sn@Pt core-shell nanorods for enhanced ethanol electrooxidation with concurrent hydrogen production. Chem Sci 2023; 14:9488-9495. [PMID: 37712030 PMCID: PMC10498666 DOI: 10.1039/d3sc02771f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
The electrooxidation of ethanol as an alternative to the oxygen evolution reaction presents a promising approach for low-cost hydrogen production. However, the design and synthesis of efficient ethanol oxidation electrocatalysts remain key challenges. Here, a colloidal procedure is developed to prepare Pd2Sn@Pt core-shell nanorods with an expanded Pt lattice and tunable length. The obtained Pd2Sn@Pt catalysts exhibit superior activity and stability for ethanol electrooxidation compared to Pd2Sn and commercial Pt/C catalysts. By tuning the length of the Pd2Sn@Pt nanorods, remarkable mass activity of up to 4.75 A mgPd+Pt-1 and specific activity of 20.14 mA cm-2 are achieved for the short nanorods owing to their large specific surface area. A hybrid electrolysis system for ethanol oxidation and hydrogen evolution is constructed using Pd2Sn@Pt as the anodic catalyst and Pt mesh as the cathode. The system requires a low cell voltage of 0.59 V for the simultaneous production of acetic acid and hydrogen at a current density of 10 mA cm-2. Density functional theory calculations further reveal that the strained Pt shell reduces energy barriers in the ethanol electrooxidation pathway, facilitating the conversion of ethanol to acetic acid. This work provides valuable guidance for developing highly efficient ethanol electrooxidation catalysts for integrated hydrogen production systems.
Collapse
Affiliation(s)
- Tong Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Qiuxia Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Wenjie Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Huaming Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Yong Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Junfeng Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| |
Collapse
|
4
|
Zhao F, Yuan Q. Abundant Exterior/Interior Active Sites Enable Three-Dimensional PdPtBiTe Dumbbells C-C Cleavage Electrocatalysts for Actual Alcohol Fuel Cells. Inorg Chem 2023; 62:14815-14822. [PMID: 37647605 DOI: 10.1021/acs.inorgchem.3c02642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Developing high-activity electrocatalysts is of great significance for the commercialization of direct alcohol fuel cells (DAFCs), but it still faces challenges. Herein, three-dimensional (3D) porous PdPtBiTe dumbbells (DBs) were successfully fabricated via the visible photoassisted method. The alloying effect, defect-rich surface/interface and nanoscale cavity, and open pores make the 3D PdPtBiTe DBs a comprehensive and remarkable electrocatalyst for the C1-C3 alcohol (ethanol, ethylene glycol, glycerol, and methanol) oxidation reaction (EOR, EGOR, GOR, and MOR, respectively) in an alkaline electrolyte, and the results of in situ Fourier transform infrared spectra revealed a superior C-C bond cleavage ability. The 3D PdPtBiTe DBs exhibit ultrahigh EOR, EGOR, GOR, and MOR mass activities of 25.4, 23.2, 16.8, and 18.3 A mgPd + Pt-1, respectively, considerably surpassing those of the commercial Pt/C and Pd/C. Moreover, the mass peak power densities of 3D PdPtBiTe DBs in actual ethanol, ethylene glycol, glycerol, or methanol fuel cells increase to 409.5, 501.5, 558.0, or 601.3 mW mgPd + Pt-1 in O2, respectively. This study provides a new class of multimetallic nanomaterials as state-of-the-art multifunctional anode electrocatalysts for actual DAFCs.
Collapse
Affiliation(s)
- Fengling Zhao
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, P. R. China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, P. R. China
| |
Collapse
|
5
|
Peculiarities of electrocatalytic and corrosion behavior of palladium and palladium-molybdenum electrolytic deposits. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|