1
|
Liu Z, Fu H, Dong H, Lai K, Yang Z, Fan C, Luo Y, Qin W, Guo L. Triphenylphosphine-Modified Iridium III, Rhodium III, and Ruthenium II Complexes to Achieve Enhanced Anticancer Selectivity by Targeting Mitochondria. Inorg Chem 2024. [PMID: 39681494 DOI: 10.1021/acs.inorgchem.4c03975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The incorporation of an organelle-targeting moiety into compounds has proven to be an effective strategy in the development of targeted anticancer drugs. We herein report the synthesis, characterization, and biological evaluation of novel triphenylphosphine-modified half-sandwich iridiumIII, rhodiumIII, and rutheniumII complexes. The primary goal was to enhance anticancer selectivity through mitochondrial targeting. All these triphenylphosphine-modified complexes exhibited promising cytotoxicity in the micromolar range (5.13-23.22) against A549 and HeLa cancer cell lines, surpassing the activity of comparative complexes that lack the triphenylphosphine moiety. Noteworthy is their good selectivity toward cancer cells compared to normal BEAS-2B cells, underscored by selectivity index ranging from 7.3 to >19.5. Mechanistically, these complexes primarily target mitochondria rather than interacting with DNA. The targeting of mitochondria and triggering mitochondrial dysfunction were confirmed using both confocal microscopy and flow cytometry. Their ability to depolarize mitochondrial membrane potential (MMP) and enhance reactive oxygen species (ROS) was observed, thereby leading to intrinsic apoptotic pathways. Moreover, these complexes lead to cell cycle arrest in the G2/M phase and demonstrated antimigration effects, significantly inhibiting the migration of A549 cells in wound-healing assays.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Chunyan Fan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuting Luo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Wenting Qin
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
2
|
Huang XQ, Wu RC, Liang JM, Zhou Z, Qin QP, Liang H. Anticancer activity of 8-hydroxyquinoline-triphenylphosphine rhodium(III) complexes targeting mitophagy pathways. Eur J Med Chem 2024; 272:116478. [PMID: 38718624 DOI: 10.1016/j.ejmech.2024.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/27/2024]
Abstract
Metallodrugs exhibiting distinct mechanisms of action compared with cisplatin hold promise for overcoming cisplatin resistance and improving the efficacy of anticancer drugs. In this study, a new series of rhodium (Rh)(III) complexes containing tris(triphenylphosphine)rhodium(I) chloride [(TPP)3RhCl] (TPP = triphenylphosphine, TPP=O = triphenylphosphine oxide) and 8-hydroxyquinoline derivatives (H-XR1-H-XR4), namely [Rh(XR1)2(TPP)Cl]·(TPP=O) (Yulin Normal University-1a [YNU-1a]), [Rh(XR2)2(TPP)Cl] (YNU-1b), [Rh(XR3)2(TPP)Cl] (YNU-1c), and [Rh(XR4)2(TPP)Cl] (YNU-1d), was synthesized and characterized via X-ray diffraction, mass spectrometry and IR. The cytotoxicity of the compounds YNU-1a-YNU-1d in Hep-G2 and HCC1806 human cancer cell lines and normal HL-7702 cell line was evaluated. YNU-1c exhibited cytotoxicity and selectivity in HCC1806 cells (IC50 = 0.13 ± 0.06 μM, selectivity factor (SF) = 384.6). The compounds YNU-1b and YNU-1c, which were selected for mechanistic studies, induced the activation of apoptotic pathways and mitophagy. In addition, these compounds released cytochrome c, cleaved caspase-3/pro-caspase-3 and downregulated the levels of mitochondrial respiratory chain complexes I/IV (M1 and M4) and ATP. The compound YNU-1c, which was selected for in vivo experiments, exhibited tumor growth inhibition (58.9 %). Importantly, hematoxylin and eosin staining and TUNEL revealed that HCC1806 tumor tissues exhibited significant apoptotic characteristics. YNU-1a-YNU-1d compounds are promising drug candidates that can be used to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Xiao-Qiong Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Run-Chun Wu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Jian-Min Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Zhen Zhou
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
3
|
Kowalik M, Masternak J, Olszewski M, Maciejewska N, Kazimierczuk K, Sitkowski J, Dąbrowska AM, Chylewska A, Makowski M. Anticancer Study on Ir III and Rh III Half-Sandwich Complexes with the Bipyridylsulfonamide Ligand. Inorg Chem 2024; 63:1296-1316. [PMID: 38174357 DOI: 10.1021/acs.inorgchem.3c03801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Organometallic half-sandwich complexes [(η5-Cp)IrCl(L)]PF6 (1) and [(η5-Cp)RhCl(L)]PF6 (2) were prepared using pentamethylcyclopentadienyl chloride dimers of iridium(III) or rhodium(III) with the 4-amino-N-(2,2'-bipyridin-5-yl)benzenesulfonamide ligand (L) and ammonium hexafluorophosphate. The crystal structures of L, 1, and 2 were analyzed in detail. The coordination reactions of the ligand with the central ions were confirmed using various spectroscopic techniques. Additionally, the interactions between sulfaligand, Ir(III), and Rh(III) complexes with carbonic anhydrase (CA), human serum albumin (HSA), and CT-DNA were investigated. The iridium(III) complex (1) did not show any antiproliferative properties against four different cancer cell lines, i.e., nonsmall cell lung cancer A549, colon cancer HCT-116, breast cancer MCF7, lymphoblastic leukemia Nalm-6, and a nonmalignant human embryonic kidney cell line HEK293, due to high binding affinity to GSH. The sulfonamide ligand (L) and rhodium(III) complex (2) were further studied. L showed competitive inhibition toward CA, while complexes 1 and 2, uncompetitive. All compounds interacted with HSA, causing a conformational change in the protein's α-helical structure, suggesting the induction of a more open conformation in HSA, reducing its biological activity. Both L and 2 were found to induce cell death through a caspase-dependent pathway. These findings position L and 2 as potential starting compounds for pharmaceutical, therapeutic, or medicinal research.
Collapse
Affiliation(s)
- Mateusz Kowalik
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Mateusz Olszewski
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Natalia Maciejewska
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Katarzyna Kazimierczuk
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jerzy Sitkowski
- Institute of Organic Chemistry, Polish Academic of Science, Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
- National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland
| | | | - Agnieszka Chylewska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
4
|
Wang ZF, Huang XQ, Wu RC, Xiao Y, Zhang SH. Antitumor studies evaluation of triphenylphosphine ruthenium complexes with 5,7-dihalo-substituted-8-quinolinoline targeting mitophagy pathways. J Inorg Biochem 2023; 248:112361. [PMID: 37659141 DOI: 10.1016/j.jinorgbio.2023.112361] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Both ruthenium-containing complexes and 8-quinolinoline compounds have emerged as a potential novel agent for malignant tumor therapy. Here, three triphenylphosphine ruthenium complexes, [Ru(ZW1)(PPh3)2Cl2] (PPh3 = triphenylphosphine) (RuZ1), [Ru(ZW2)(PPh3)2Cl2] (RuZ2) and [Ru(ZW2)2(PPh3)Cl2]·CH2Cl2 (RuZ3) bearing 5,7-dichloro-8-quinolinol (H-ZW1) and 5,7-dichloro-8-hydroxyquinaldine (H-ZW2), have been synthesized, characterized and tested for their anticancer potential. We showed that triphenylphosphine ruthenium complexes RuZ1-RuZ3 impaired the cell viability of ovarian adenocarcinoma cisplatin-resistant SK-OV-3/DDP (SKO3CR) and SK-OV-3 (SKO3) cancer cells with greater selectivity and specificity than cisplatin. In addition, RuZ1-RuZ3 show higher excellent cytotoxicity than cisplatin towards SKO3CR cells, with IC50 values of 9.66 ± 1.08, 4.05 ± 0.67 and 7.18 ± 0.40 μM, respectively, in which the SKO3CR cells was the most sensitive to RuZ1-RuZ3. Depending on the substituent type, the antiproliferative ability of RuZ1-RuZ3 followed the trend: -CH3 > -H. However, RuZ1-RuZ3 have no obvious toxicity to normal cell HL-7702. Besides, RuZ1 and RuZ2 could induce mitophagy related-apoptosis pathways through suppression of mitochondrial membrane potential (ΔΨm), accumulation of [Ca2+] and reactive oxygen species (ROS), and regulation of LC3 II/LC3 I, Beclin-1, P62, FUNDC1, PINK1, Parkin, cleaved-caspase-3, caspase-9 and cytochrome c signaling pathway, and hindering the preparation of mitochondrial respiration complexes I and IV and ATP levels. Mechanistic study revealed that RuZ1 and RuZ2 induce apoptosis in SKO3CR cells via mitophagy related-apoptosis pathways induction and energy (ATP) generation disturbance. Taken together, the studied triphenylphosphine ruthenium complexes RuZ1-RuZ3 are promising chemotherapeutic agents with high effectiveness and low toxicity.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Guilin, PR China
| | - Xiao-Qiong Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Run-Chun Wu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Yu Xiao
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PR China.
| | - Shu-Hua Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Guilin, PR China.
| |
Collapse
|
5
|
Wang Y, Luo YZ, Liu ZJ, Yao ZJ. Cationic N,S-chelate half-sandwich iridium complexes: synthesis, characterization, anticancer and antiplasmodial activity. Biomater Sci 2023; 11:7090-7098. [PMID: 37667825 DOI: 10.1039/d3bm01027a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
A series of pyrazole-based ligands and their corresponding cationic N,S-chelate half-sandwich iridium complexes were successfully synthesized. All iridium complexes exhibited good anticancer activity against the MCF-7 and MDA-MB-231 human breast cancer cells. The cytotoxic activity of unsubstituted iridium complex 1 is greater than that of cisplatin against MCF-7 cells. In addition, the cationic half-sandwich iridium complexes are also efficient in antiplasmodial study and complex 1 displayed the best activity as its IC50 was observed to be approximately 0.11 μM against the CQS-NF54 strain. These iridium complexes generally exhibited enhanced activity against the CQS-NF54 strain in comparison with that against the CQR-K1 strain. An "IC50 speed assay" investigation against the CQS-NF54 strain indicated complexes 1-3 to be fast-acting complexes that reach their lowest IC50 values within 16 hours. All complexes were fully characterized by IR spectroscopy, NMR spectroscopy, and elemental analysis, and the structure of the iridium complex was confirmed by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Yu-Zhou Luo
- Scientific Research Office, Guangzhou College of Commerce, Guangzhou, 511363, China.
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Zi-Jian Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
6
|
Guo L, Li P, Li J, Gong Y, Li X, Liu Y, Yu K, Liu Z. Half-Sandwich Iridium(III), Rhodium(III), and Ruthenium(II) Complexes Chelating Hybrid sp 2-N/sp 3-N Donor Ligands to Achieve Improved Anticancer Selectivity. Inorg Chem 2023; 62:15118-15137. [PMID: 37671819 DOI: 10.1021/acs.inorgchem.3c02118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The biological efficacy of half-sandwich platinum group organometallic complexes of the formula [(η5-Cpx)/(η6-arene)M(XY)Cl]0/+ (XY = bidentate ligands; Cpx = functionalized cyclopentadienyl; M = Ir, Rh, Ru, Os) has received considerable attention due to the significance of the metal center, chelating ligand, and Cpx/arene moieties in defining their anticancer potency and selectivity. With a facile access to the BIAN-derived imine-amine ligands using alkylaluminum as the reductant, we herein described the preparation and characterization of 16 half-sandwich Ir(III), Rh(III), and Ru(II) complexes chelating the hybrid sp2-N/sp3-N donor ligand. A nonplanar five-member metallacycle was confirmed by X-ray single-crystal structures of Ir1-Ir3, Ir7, Rh1, Ru1, and Ru4. The attempt to prepare imine-amido complexes using a base as the deprotonating agent led to the mixture of imine-amine complexes, within which the leaving group Cl- was displaced, and 16-electron imine-amido complexes without Cl-. The half-sandwich imine-amine complexes in this system underwent rapid hydrolysis in aqueous solution, exhibited weak photoluminescence, and showed the ability of binding to CT-DNA and BSA. The cytotoxicity of all imine-amine complexes against A549 lung cancer cell lines, HeLa cervical cancer cell lines, and 4T1 mouse breast cancer cells was determined by an MTT assay. The IC50 values of these complexes were in a range of 5.71-67.28 μM. Notably, most of these complexes displayed improved selectivity toward A549 cancer cells versus noncancerous BEAS-2B cells in comparison with the corresponding α-diimine complexes chelating the sp2-N/sp2-N donor ligand, which have been shown no selectivity in our previous report. The anticancer selectivity of these complexes appeared to be related to the redox-based mechanism including the catalytic oxidation of NADH to NAD+, reactive oxygen species (ROS) generation, and depolarization of the mitochondrial membrane. Further, inducing apoptosis of these complexes in A549 cancer cells and BEAS-2B normal cells also correlated with their anticancer selectivity, indicating the apoptosis mode of cell death in this system. In addition, these complexes could enter A549 cells via energy-dependent pathway and were able to impede the in vitro migration of A549 cells.
Collapse
Affiliation(s)
- Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Pengwei Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jiaxing Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuwen Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xiaoyuan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yiming Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Kaijian Yu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
7
|
Mrkvicová A, Peterová E, Nemec I, Křikavová R, Muthná D, Havelek R, Kazimírová P, Řezáčová M, Štarha P. Rh(III) and Ru(II) complexes with phosphanyl-alkylamines: inhibition of DNA synthesis induced by anticancer Rh complex. Future Med Chem 2023; 15:1583-1602. [PMID: 37750220 DOI: 10.4155/fmc-2023-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Aim: This investigation was designed to synthesize half-sandwich Rh(III) and Ru(II) complexes and study their antiproliferative activity in human cancer cell lines. Materials & methods: Nine compounds were prepared and tested by various assays for their anticancer activity and mechanism of action. Results: Hit Rh(III) complex 6 showed low-micromolar potency in cisplatin-sensitive (A2780) and -resistant (A2780cis) ovarian carcinoma cell lines, promising selectivity toward these cancer cells over normal lung fibroblasts and an unprecedented mechanism of action in the treated cells. DNA synthesis was decreased and CDKN1A expression was upregulated, but p21 expression was not induced. Conclusion: Rh complex 6 showed high antiproliferative activity, which is induced through a p21-independent mechanism of action.
Collapse
Affiliation(s)
- Alena Mrkvicová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Eva Peterová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Ivan Nemec
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Radka Křikavová
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Darina Muthná
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Petra Kazimírová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Pavel Štarha
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
8
|
Opačak S, Pernar Kovač M, Brozovic A, Piantanida I, Kirin SI. Turn-on fluorescence of ruthenium pyrene complexes in response to bovine serum albumin. Dalton Trans 2023; 52:11698-11704. [PMID: 37555301 DOI: 10.1039/d3dt02289g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Two novel pyrene triphenylphosphine ruthenium conjugates act as fluorescent turn-on beacons for serum albumin, being non-fluorescent in aqueous media but exhibiting strong emission upon binding to BSA. The selective cytotoxicity of the compounds against tumour cells is enhanced upon irradiation by UV-light, paving the way for application in photodynamic therapy under two-photon excitation.
Collapse
Affiliation(s)
- Saša Opačak
- Ruđer Boškovic Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | | | - Anamaria Brozovic
- Ruđer Boškovic Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Ivo Piantanida
- Ruđer Boškovic Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Srećko I Kirin
- Ruđer Boškovic Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| |
Collapse
|