1
|
Fan ZX, Lian KT, Liao PY, Ruan ZY, Ni ZP, Tong ML. Synergetic spin crossover and fluorescence in a mononuclear iron(III) complex. Chem Commun (Camb) 2024; 60:13227-13230. [PMID: 39445391 DOI: 10.1039/d4cc05036c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Two mononuclear iron(III) complexes (XEA)[Fe(azp)2]·H2O (H2azp = 2,2'-azodiphenol, XEA = 2-fluoroethylammonium and 2-chloroethylammonium) are synthesized, which exhibit the counterion dependence of magnetic and fluorescent properties. The synergetic effect between abrupt spin crossover and fluorescence is observed in an iron(III) complex for the first time.
Collapse
Affiliation(s)
- Zi-Xuan Fan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Kai-Ting Lian
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Pei-Yu Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
2
|
Gui LA, Zhang YF, Peng Y, Hu ZB, Song Y. Synergetic Responses of Multiple Functions Induced by Phase Transition in Molecular Materials. Chemphyschem 2024; 25:e202400297. [PMID: 38797706 DOI: 10.1002/cphc.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Materials that integrate magnetism, electricity and luminescence can not only improve the operational efficiency of devices, but also potentially generate new functions through their coupling. Therefore, multifunctional synergistic effects have broad application prospects in fields such as optoelectronic devices, information storage and processing, and quantum computing. However, in the research field of molecular materials, there are few reports on the synergistic multifunctional properties. The main reason is that there is insufficient awareness of how to obtain such material. In this brief review, we summarized the molecular materials with this characteristic. The structural phase transition of substances will cause changes in their physical properties, as the electronic configurations of the active unit in different structural phases are different. Therefore, we will classify and describe the multifunctional synergistic complexes based on the structural factors that cause the first-order phase transition of the complexes. This enables us to quickly screen complexes with synergistic responses to these properties through structural phase transitions, providing ideas for studying the synergistic response of physical properties in molecular materials.
Collapse
Affiliation(s)
- Ling-Ao Gui
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, China
| | - Yi-Fan Zhang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, China
| | - Yan Peng
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, China
| | - Zhao-Bo Hu
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, China
| | - You Song
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Chen YR, Ying TT, Chen YC, Liao PY, Ni ZP, Tong ML. Bidirectional photomagnetism, exciplex fluorescence and dielectric anomalies in a spin crossover Hofmann-type coordination polymer. Chem Sci 2024; 15:9240-9248. [PMID: 38903231 PMCID: PMC11186333 DOI: 10.1039/d4sc00331d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/09/2024] [Indexed: 06/22/2024] Open
Abstract
Stepped spin crossover (SCO) complexes with three or more spin states have promising applications in high-order data storage, multi-switches and multi-sensors. Further synergy with other functionalities, such as luminescence and dielectric properties, will provide a good chance to develop novel multifunctional SCO materials. Here, a bent pillar ligand and luminescent pyrene guest are integrated into a three-dimensional (3D) Hofmann-type metal-organic framework (MOF) [Fe(dpoda){Au(CN)2}2]·pyrene (dpoda = 2,5-di-(pyridyl)-1,3,4-oxadiazole). The magnetic data show an incomplete and two-step SCO behavior with the sequence of 1 ↔ 1/2 ↔ 1/4. The rare bi-directional light-induced excited spin-state trapping (LIESST) effect and light-induced stepped thermal relaxation after LIESST are observed. The pyrene guests interact with dpoda ligands via offset face-to-face π⋯π interactions to form intermolecular exciplex emissions. The competition between thermal quenching and stepped SCO properties results in a complicated and stepped exciplex fluorescence. Moreover, the stepped dielectric property with higher dielectric permittivity at lower temperature may be related to the more frustrated octahedral distortion parameters in the intermediate spin states. Hence, a 3D Hofmann-type MOF with bent pillar ligands and fluorescent guests illustrates an effective way for the development of multifunctional switching materials.
Collapse
Affiliation(s)
- Yan-Ru Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ting-Ting Ying
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Pei-Yu Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
4
|
Koo YS, Galan-Mascaros JR. Memory effect in ferroelectric polyvinylidene fluoride (PVDF) films via spin crossover probes. Dalton Trans 2024; 53:7590-7595. [PMID: 38616712 DOI: 10.1039/d4dt00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Ferroelectric polymers are of great interest due to their intrinsic processing capabilities, superior to classic inorganic ferroelectric materials. For example, polyvinylidene fluoride (PVDF) and derivatives have been incorporated into multiple device architectures for information storage and transfer. Here we report an additional advantage of organic ferroelectrics as their flexibility allows for the preparation of composites with spin crossover (SCO) probes to tune their ferroelectric parameters by external stimuli. We demonstrate how the saturation polarization and coercive field of a ferroelectric [Fe(NH2trz)3](NO3)2/PVDF composite film depends on the spin state of the [Fe(NH2trz)3](NO3)2, opening a thermal hysteresis and delivering a ferroelectric material with a memory effect. This switching may now be used to tune the function of a device, adding additional information states to the elemental binary logic. Additional evidence of the synergy between the two components of these films was also found in the glass transition of the PVDF component that induces small changes in the paramagnetic component.
Collapse
Affiliation(s)
- Yong Sung Koo
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans 16, 43007-Tarragona, Spain.
| | - Jose Ramon Galan-Mascaros
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans 16, 43007-Tarragona, Spain.
- ICREA, Passeig Lluís Companys 23, 08010-Barcelona, Spain
| |
Collapse
|
5
|
Feng J, Wang X, Wang L, Kfoury J, Oláh J, Zhang S, Zou L, Guo Y, Xue S. Naphthalimide-Tagged Iron(II) Spin Crossover Complex with Synergy of Ratiometric Fluorescence for Thermosensing. Inorg Chem 2024; 63:108-116. [PMID: 38113189 DOI: 10.1021/acs.inorgchem.3c01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Spin crossover (SCO) materials that possess switchable and cooperative fluorescence have long focused interest in photonic sensor devices to monitor the variations in the physicochemical parameters of the external environment. However, the lack of quantified cooperativity for the SCO transition operating in isolated molecules is detrimental to short-term technological applications. In this study, a pretwisted energy D-A system combining the deep-blue naphthalimide fluorophore (donor) and the FeN6 SCO chromophore (switchable acceptor) has been developed with the formula of Fe(naph-abpt)2(NCS)2·2DMF (1), where naph-abpt is N-[3,5-di(pyridin-2-yl)-4H-1,2,4-triazol-4-yl]-1,8-naphthalimide. Dual emission from the naphthalimide function based on its vibronic structure exhibits a different synergy effect with SCO, providing a new platform for ratiometric fluorescence thermosensing. Theoretical calculations and optical experimental results demonstrate an excellent correlation between luminescence intensity ratio signals and magnetic data of spin transition, promising a high sensitivity of the optical activity of the ligand to the spin state of the active iron(II) ions, with the maximum relative sensitivity as 0.7% K-1 around T1/2.
Collapse
Affiliation(s)
- Junchuang Feng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoqin Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liang Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Joseph Kfoury
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary
| | - Shishen Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lifei Zou
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Life Science, Chifeng University, Chifeng 024000, China
| | - Yunnan Guo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shufang Xue
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
6
|
Yan FF, Jiang WJ, Yao NT, Mao PD, Zhao L, Sun HY, Meng YS, Liu T. Manipulating fluorescence by photo-switched spin-state conversions in an iron(ii)-based SCO-MOF. Chem Sci 2023; 14:6936-6942. [PMID: 37389243 PMCID: PMC10306093 DOI: 10.1039/d3sc01217d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Manipulating fluorescence by photo-switched spin-state conversions is an attractive prospect for applications in smart magneto-optical materials and devices. The challenge is how to modulate the energy transfer paths of the singlet excited state by light-induced spin-state conversions. In this work, a spin crossover (SCO) FeII-based fluorophore was embedded into a metal-organic framework (MOF) to tune the energy transfer paths. Compound 1 {Fe(TPA-diPy)[Ag(CN)2]2}·2EtOH (1) has an interpenetrated Hofmann-type structure, wherein the FeII ion is coordinated by a bidentate fluorophore ligand (TPA-diPy) and four cyanide nitrogen atoms and acts as the fluorescent-SCO unit. Magnetic susceptibility measurements revealed that 1 underwent an incomplete and gradual spin crossover with T1/2 = 161 K. Photomagnetic studies confirmed photo-induced spin state conversions between the low-spin (LS) and high-spin (HS) states, where the irradiation of 532 and 808 nm laser lights converted the LS and HS states to the HS and LS states, respectively. Variable-temperature fluorescence spectra study revealed an anomalous decrease in emission intensity upon the HS → LS transition, confirming the synergetic coupling between the fluorophore and SCO units. Alternating irradiation of 532 and 808 nm laser lights resulted in reversible fluorescence intensity changes, confirming spin state-controlled fluorescence in the SCO-MOF. Photo-monitored structural analyses and UV-vis spectroscopic studies demonstrated that the photo-induced spin state conversions changed energy transfer paths from the TPA fluorophore to the metal-centered charge transfer bands, ultimately leading to the switching of fluorescence intensities. This work represents a new prototype compound showing bidirectional photo-switched fluorescence by manipulating the spin states of iron(ii).
Collapse
Affiliation(s)
- Fei-Fei Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Wen-Jing Jiang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Pan-Dong Mao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| |
Collapse
|
7
|
Shen D, Sha Y, Chen C, Chen X, Jiang Q, Liu H, Liu W, Liu Q. A one-dimensional cobalt-based coordination polymer as a cathode material of lithium-ion batteries. Dalton Trans 2023; 52:7079-7087. [PMID: 37161931 DOI: 10.1039/d3dt00398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
For obtaining high-performance lithium-ion batteries, it is important to develop new cathode materials with high capacity. Herein, a one-dimensional coordination polymer [Co(4-DTBPT) (DMF)2(H2O)2] (4-DTBPT) (C10H4O8) (Co-DTBPT) (4-DTBPT = 2,7-di(4H-1,2,4-triazol-4yl)benzo[lmn][3,8] phenanthroline-1,3,6,8-(2H,7H)-tetraone; DMF = dimethylformamide) was synthesized and its electrochemical performance as the cathode material of lithium-ion batteries was first investigated. The Co-DTBPT electrode showed better cycling stability and a specific capacity of 55 mA h g-1 at 50 mA g-1 after 50 cycles, and the coulombic efficiency was close to 100%. The capacity contribution of the Co-DTBPT electrode may be ascribed to the redox reaction of the Co(II) ion and the 4-DTBPT ligand in the process of charge and discharge. Our work proves once again that using one-dimensional coordination polymers as cathode materials for lithium-ion batteries is a feasible way.
Collapse
Affiliation(s)
- Daozhen Shen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis Green Manufacturing Collaborative Innovation Center and School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, Changzhou, Jiangsu 213164, China.
| | - Yanyong Sha
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis Green Manufacturing Collaborative Innovation Center and School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, Changzhou, Jiangsu 213164, China.
| | - Chen Chen
- Department of Chemistry, College of Science, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, P. R. China.
| | - Xiaojuan Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis Green Manufacturing Collaborative Innovation Center and School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, Changzhou, Jiangsu 213164, China.
| | - Qingyan Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis Green Manufacturing Collaborative Innovation Center and School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, Changzhou, Jiangsu 213164, China.
| | - Hongjiang Liu
- Department of Chemistry, College of Science, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, P. R. China.
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China.
| | - Qi Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis Green Manufacturing Collaborative Innovation Center and School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, Changzhou, Jiangsu 213164, China.
| |
Collapse
|