1
|
Sun H, Liu X, Li Y, Zhang F, Huang X, Sun C, Huang F. Mechanistic insights of electrocatalytic CO 2 reduction by Mn complexes: synergistic effects of the ligands. Dalton Trans 2024; 53:1663-1672. [PMID: 38168800 DOI: 10.1039/d3dt03453d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The electrocatalytic mechanisms of CO2 reduction catalyzed by pyridine-oxazoline (pyrox)-based Mn catalysts were investigated by DFT calculations. In-depth comparative analyses of pyrox-based and bipyridine-based Mn complexes were carried out. C-OH cleavage is the rate-determining step for both the protonation-first path and the reduction-first path. The free energy of CO2 activation (ΔG1) and the electrons donated by CO ligands in this step are effective descriptors in regulating the C-OH cleavage barrier. The reduction of carboxylate complex 6 (E6) is the potential-determining step for the reduction-first path. Meanwhile, for the protonation-first path, the initial generation (E2) or the regeneration (E8) of active catalyst might be potential-determining. Hirshfeld charge and orbital contribution analysis indicate that E6 is definitely based on the heterocyclic ligand and E2 is related to both the heterocyclic ligand and three CO ligands. Therefore, replacement of the CO ligand by a stronger electron donating ligand can effectively boost the catalytic activity of CO2 reduction without increasing the overpotential in the reduction-first path. This hypothesis is supported by the mechanism calculations of the Mn complex in which the axial CO ligand is replaced by a pyridine or PMe3.
Collapse
Affiliation(s)
- Haitao Sun
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xueqing Liu
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yafeng Li
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Fang Zhang
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiuxiu Huang
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Chuanzhi Sun
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Fang Huang
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
2
|
Feng Q, Huang C, Chen Z, Huang Z, Huang HH, Hu H, Liang F, Liu D. Electronic Effect Promoted Visible-Light-Driven CO 2-to-CO Conversion in a Water-Containing System. Inorg Chem 2023; 62:21416-21423. [PMID: 38061059 DOI: 10.1021/acs.inorgchem.3c03543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The design of unsaturated nonprecious metal complexes with high catalytic performance for photochemical CO2 reduction is still an important challenge. In this paper, four coordinatively unsaturated Co-salen complexes 1-4 were explored in situ using o-phenylenediamine derivatives and 5-methylsalicylaldehyde as precursors of the ligands in 1-4. It was found that complex 4, bearing a nitro substituent (-NO2) on the aromatic ring of the salen ligand, exhibits the highest photochemical performance for visible-light-driven CO2-to-CO conversion in a water-containing system, with TONCO and CO selectivity values of 5300 and 96%, respectively. DFT calculations and experimental results revealed that the promoted photocatalytic activity of 4 is ascribed to the electron-withdrawing effect of the nitro group in 4 compared to 1-3 (with -CH3, -F, and -H groups, respectively), resulting in a lower reduction potential of active metal centers CoII and lower barriers for CO2 coordination and C-O cleavage steps for 4 than those for catalysts 1-3.
Collapse
Affiliation(s)
- Qin Feng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Chunzhao Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Zubing Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Hai-Hua Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| |
Collapse
|