1
|
Liu ZZ, Huang SL, Yang GY. High-Nuclear Co-Added Polyoxometalate-Based Chain: Electrocatalytic Oxygen Production. Inorg Chem 2024; 63:12803-12809. [PMID: 38957131 DOI: 10.1021/acs.inorgchem.4c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
A high-nuclear Co-added polyoxometalate (CoAP) was synthesized via a hydrothermal reaction: H14.5K9Na7.5-{[Co8(μ2-OH)(μ3-OH)2(H2O)2(Co(H2O)GeW6O26)(B-α-GeW9O34)2][BO(OH)2][Co12(μ2-OH)(μ3-OH)5(H2O)3(Co(H2O)GeW6O26)(GeW6O26)(B-α-GeW9O34)]}·46H2O (1). The polyoxoanion of 1 contains a large Co20 cluster gathered by lacunary GeW6O26 and GeW9O34 subunits. 1 represents a one-dimensional (1D) chain formed by adjacent polyoxoanions coupling through a CoO6 double bridge, showing the first example of a high-nuclear CoAP-based inorganic chain. 1 served as an efficient electrocatalyst in oxygen evolution reactions (OERs).
Collapse
Affiliation(s)
- Zheng-Zheng Liu
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
2
|
Dai W, Li X, He C, Li X, Kong C, Cheng F, Liu JJ. Polyoxometalate-dependent Photocatalytic Activity of Radical-doped Perylenediimide-based Hybrid Materials. Chemistry 2024; 30:e202303996. [PMID: 38165074 DOI: 10.1002/chem.202303996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Inorganic-organic hybrid materials are a kind of multiduty materials with high crystallinity and definite structures, built from functional inorganic and organic components with highly tunable photochemical properties. Perylenediimides (PDIs) are a kind of strong visible light-absorbing organic dyes with π-electron-deficient planes and photochemical properties depending on their micro-environment, which provides a platform for designing tunable and efficient hybrid photocatalytic materials. Herein, four radical-doped PDI-based crystalline hybrid materials, Cl4-PDI⋅SiW12O40 (1), Cl4-PDI⋅SiMo12O40 (2), Cl4-PDI⋅PW12O40 (3), and Cl4-PDI⋅PMo12O40 (4), were attained by slow diffusion of polyoxometalates (POMs) into acidified Cl4-PDI solutions. The obtained PDI-based crystalline hybrid materials not only exhibited prominent photochromism, but also possessed reactive organic radicals under ambient conditions. Furthermore, all hybrid materials could be easily photoreduced to their radical anions (Cl4-PDI⋅-), and then underwent a second photoexcitation to form energetic excited state radical anions (Cl4-PDI⋅-*). However, experiments and theoretical calculations demonstrated that the formed energetic Cl4-PDI⋅-* showed unusual POM-dependent photocatalytic efficiencies toward the oxidative coupling of amines and the iodoperfluoroalkylation of alkenes; higher photocatalytic efficiencies were found for hybrid materials 1 (anion: SiW12O40 4-) and 2 (anion: SiMo12O40 4-) compared to 3 (anion: PW12O40 3-) and 4 (anion: PMo12O40 3-). The photocatalytic efficiencies of these hybrid materials are mainly controlled by the energy differences between the SOMO-2 level of Cl4-PDI⋅-* and the LUMO level of the POMs. The structure-photocatalytic activity relationships established in present work provide new research directions to both the photocatalysis and hybrid material fields, and will promote the integration of these areas to explore new materials with interesting properties.
Collapse
Affiliation(s)
- Weijun Dai
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
- School of Ethnic Medicine, Yunnan Minzu University, Kunmin, 650504, P. R. China
| | - Xiaobo Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
| | - Chixian He
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
| | - Xiang Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
| | - Ci Kong
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
| | - Feixiang Cheng
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
| | - Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
| |
Collapse
|
3
|
Wang J, Liu Y, Yuan Z, Li L, Ma P, Wang J, Niu J. Visible-Light-Responsive Polyoxometalate@Metal-Organic Frameworks Involving Ir Metalloligands for Highly Selective Photocatalytic Oxidation of Sulfides to Sulfoxide. Chemistry 2024; 30:e202303401. [PMID: 38057690 DOI: 10.1002/chem.202303401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
The synthesis of highly efficient visible-light-responsive photocatalysts is fundamental to solving the problems of low efficiency and poor selectivity in photocatalytic organic synthesis reactions. We synthesized a crystalline polyoxometalate @metal-organic framework material {Zn4 (H2 O)8 [Ir(ppy)2 (dcbpy)]4 [SiW12 O40 ]} ⋅ 4H2 O (Ir-SiW) by self-assembly of Ir metalloligands with POMs. The introduction of Ir metalloligands extends the light absorbing range to visible light, improving the efficient utilization of solar energy. The transfer of photogenerated electrons from Ir metalloligands to SiW12 was observed under visible light irradiation, which boosted the carrier separation efficiency. The synergistic effect of the two components increased the photocatalytic thioether oxidation activity, and the product methyl phenyl sulfoxide for 2.5 h under visible light irradiation (λ >400 nm) reached 99.5 %, which was higher than those of other POM-based photocatalysts. Meanwhile, the yield of methyl phenyl sulfoxide was still higher than 97 % after three cycles, demonstrating the high stability and reusability of Ir-SiW.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
- Puyang Institute of Technology, Henan University, Puyang, Henan, 457000, P. R. China
| | - Zelong Yuan
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| |
Collapse
|
4
|
Lun HJ, Dai SQ, Li YX, Guo HL, Andra S, Dang DB, Bai Y. Assembly of Lanthanide-Containing 3D [MnMo 9O 32] 6--Based Metal-Organic Frameworks and Oxidative Desulfurization Performance. Inorg Chem 2023; 62:19749-19757. [PMID: 37983184 DOI: 10.1021/acs.inorgchem.3c03194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Lanthanide-containing polyoxometalate-based metal-organic frameworks (POMOFs) not only enjoy intriguing architectures but also have good application prospects as catalysts. Herein, three novel three-dimensional (3D) POMOFs with the formulas of {H[Ln3(2,6-pydc)2(H2O)10(MnMo9O32)]·2H2O}n (Ln = La(1), Pr(2), Nd(3)) have been synthesized based on Waugh-type [MnMo9O32]6- anions and pyridine-2,6-dicarboxylate (2,6-H2pydc). Compounds 1-3 are isomorphic, and there are two kinds of one-dimensional (1D) helical chains with opposite handedness staggered into two-dimensional (2D) layers. Interestingly, the coordinated L- and R-[MnMo9O32]6- anions are encapsulated in 1D chains with the same chirality and are further expanded into 3D structures. The catalytic tests indicate that compounds 1-3 exhibit high-efficiency heterogeneous catalytic activity in the oxidative desulfurization reaction for catalyzing the oxidation of sulfides to sulfoxides using tert-butyl hydrogen peroxide (TBHP) as the oxidant. Moreover, a series of control experiments have been conducted to investigate the influence of various parameters such as temperature, time, solvent, catalyst, and substrate on the reaction. Significantly, compound 2, as an example, exhibits good reusability and structural stability in the oxidative desulfurization reaction. It is worth noting that investigations on the oxidative desulfurization of [MnMo9O32]6- anions are scarce. Moreover, their electrochemical properties are also explored.
Collapse
Affiliation(s)
- Hui-Jie Lun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Sheng-Qiang Dai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Ya-Xin Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Hui-Li Guo
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Swetha Andra
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Dong-Bin Dang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Yan Bai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
5
|
Li AJ, Huang SL, Yang GY. Anderson-type polyoxometalates for catalytic applications. Dalton Trans 2023. [PMID: 37997776 DOI: 10.1039/d3dt03274d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Anderson-type polyoxometalates have exhibited remarkable catalytic capabilities in a wide range of reactions. This discourse delves into the distinct categories of Anderson POMs and their respective catalytic reactions, which are examined in separate segments. These encompass the straightforward {XMo6} POMs, the organic grafting {XMo6} POMs, and the integration of POMs into POM cluster organic frameworks. It is important to highlight that specific catalytic functionalities can solely be accomplished via the utilization of Anderson-type POMs, thus emphasizing their indispensable role in future explorations.
Collapse
Affiliation(s)
- Ai-Juan Li
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| |
Collapse
|
6
|
Niu B, Zhang M, Yan L, Yu A, Ma P, Wang J, Niu J. Two Tetra-Nuclear Ln-Substituted Prazine Dicarboxylic Acid-Functionalized Selenotungstates with Catalytic Oxidation of Thioether Properties. Inorg Chem 2023. [PMID: 37996253 DOI: 10.1021/acs.inorgchem.3c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Two two-dimensional Ln-substituted prazine dicarboxylic acid-functionalized selenotungstates Na3H9[(H2N(CH3)2]2{(Se4W27O100)[Ln4(H2O)8(Hpzdc)2(pzdc)]}·26H2O [Ln = Nd (1) and Ce (2)]; H2pzdc = 2,3-pyrazine dicarboxylic acid) have been synthesized by one-pot self-assembly strategy, in which the basic polyanion [Se4W27O100]22-was composed of two [SeW8O31]10- fragments, a [SeW9O33]8- segment and an intriguing {SeO} group, simultaneously tetra-nuclear Ln3+ ions with H2pzdc pendants were embedded. Compounds 1 and 2 showed excellent catalytic oxidation of thioether properties within a short time (20 min) with high 100% conversion and 98.9% selectivity. In addition, the pioneering Ln-substituted selenotungstates were used as catalysts to degrade sulfur mustard simulant 2-chloroethyl ethyl sulfide at room temperature with 99% conversion and 100% selectivity. The chemical kinetic experiment studies revealed that the catalytic reaction was in compliance with the first-order reaction, and the kinetic half-life (t1/2) values were 3.814 and 3.849 min, respectively.
Collapse
Affiliation(s)
- Bingxue Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Miao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Luting Yan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Anqi Yu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
7
|
Tan HR, Zhou X, You H, Zheng Q, Zhao SY, Xuan W. A porous Anderson-type polyoxometalate-based metal-organic framework as a multifunctional platform for selective oxidative coupling with amines. Dalton Trans 2023; 52:17019-17029. [PMID: 37933953 DOI: 10.1039/d3dt02620e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Incorporating catalytic units into a crystalline porous matrix represents a facile way to build high-efficiency heterogeneous catalysts, and by rational design of the porous skeleton with appropriate building blocks the catalytic performance can be significantly enhanced for a series of organic transformations owing to the synergistic effect from the multicomponent and confined porous microenvironment around catalytically active sites. Herein, we demonstrate that the design and synthesis of a porous polyoxometalate-based metal-organic framework YL2(H2O)2[CrMo6O18(PET)2]·4H2O (POMOF-1) constructed from Anderson-type [CrMo6O18(PET)2] (PET = pentaerythritol), which can be employed as a multifunctional platform for synthesis of N-containing compounds via selective oxidative coupling with amines. POMOF-1 features microporous 1D channels defined by Y3+ and L, with [CrMo6O18(PET)2] arranged orderly between adjacent Lvia electrostatic interactions. Upon using POMOF-1 as a catalyst and H2O2 as an oxidant, a variety of amines could be effectively converted to value-added amides, imines and azobenzenes via the oxidative cross-coupling with alcohols or homo-coupling. In particular, POMOF-1 showed dramatically improved activity for the N-formylation reaction owing to the synergistic and confinement effect, with the yield of amides up to 95% and 4 times higher than that of homogeneous [CrMo6O18(PET)2]. Meanwhile, the oxidative homo-coupling of arylmethylamines and arylamines can be facilely tuned by adjustment of the amount of oxidant, solvent and additive, affording imines and azobenzenes in high selectivity and yield, respectively. POMOF-1 is robust and can be reused for 5 cycles with little loss of catalytic activity and structural integrity. The work demonstrates that the combination of catalytically active POMs with crystalline porous MOFs holds great potential to build robust and recyclable heterogeneous systems with enhanced activity and selectivity for multifunctional catalysis.
Collapse
Affiliation(s)
- Hong-Ru Tan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Xiang Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Hanqi You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Qi Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Sheng-Yin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Weimin Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
8
|
Khan MS, Li Y, Li DS, Qiu J, Xu X, Yang HY. A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. NANOSCALE ADVANCES 2023; 5:6318-6348. [PMID: 38045530 PMCID: PMC10690739 DOI: 10.1039/d3na00627a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 12/05/2023]
Abstract
Water plays a vital role in all aspects of life. Recently, water pollution has increased exponentially due to various organic and inorganic pollutants. Organic pollutants are hard to degrade; therefore, cost-effective and sustainable approaches are needed to degrade these pollutants. Organic dyes are the major source of organic pollutants from coloring industries. The photoactive metal-organic frameworks (MOFs) offer an ultimate strategy for constructing photocatalysts to degrade pollutants present in wastewater. Therefore, tuning the metal ions/clusters and organic ligands for the better photocatalytic activity of MOFs is a tremendous approach for wastewater treatment. This review comprehensively reports various MOFs and their composites, especially POM-based MOF composites, for the enhanced photocatalytic degradation of organic pollutants in the aqueous phase. A brief discussion on various theoretical aspects such as density functional theory (DFT) and machine learning (ML) related to MOF and MOF composite-based photocatalysts has been presented. Thus, this article may eventually pave the way for applying different structural features to modulate novel porous materials for enhanced photodegradation properties toward organic pollutants.
Collapse
Affiliation(s)
- M Shahnawaz Khan
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Yixiang Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang 443002 P. R. China
| | - Jianbei Qiu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Xuhui Xu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| |
Collapse
|
9
|
Chi G, Shuai D, Li J, Chen X, Yang H, Zhao M, Jiang Z, Wang L, Chen B. Mechanism of melanogenesis inhibition by Keggin-type polyoxometalates. NANOSCALE 2023; 15:14543-14550. [PMID: 37609952 DOI: 10.1039/d3nr02303f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Abnormal melanin overproduction can result in hyperpigmentation syndrome in human skin diseases and enzymatic browning of fruits and vegetables. Recently, our group found that Keggin-type polyoxometalates (POMs) can efficiently inhibit tyrosinase activity. However, it remains unclear whether Keggin-type POMs exhibit optimal effects in vivo. Additionally, the inhibitory effect and mechanism of action of POMs on cellular tyrosinase activity and melanogenesis have been rarely reported. Here we demonstrate that our screened and synthesised PMo11Zn and GaMo12 show superior inhibitory effects on melanin formation as well as inhibition of cellular tyrosinase activity compared to other Keggin-type POMs. Intriguingly, we reveal that Keggin-type POMs competitively bind to tyrosinase mainly through more interactions with Cu2+ ions and the amino acid residue is capable of forming van der Waals, cation-π and hydrogen bonds, resulting in a reversible non-covalent complex formation. Our findings provide valuable insights into the design, synthesis and screening of polyoxometalates as multifunctional metallodrugs and food preservatives against hyperpigmentation.
Collapse
Affiliation(s)
- Guoxiang Chi
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Die Shuai
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Jiaxin Li
- School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Xiangsong Chen
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Han Yang
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Meijuan Zhao
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Zedong Jiang
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Li Wang
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Bingnian Chen
- Xiang'an Hospital of Xiamen University, Xiamen 361021, PR China.
| |
Collapse
|
10
|
Chen X, Wu H, Shi X, Wu L. Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis. NANOSCALE 2023. [PMID: 37158109 DOI: 10.1039/d3nr01176c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Polyoxometalate-based frameworks (POM-based frameworks) are extended structures assembled from metal-oxide cluster units and organic frameworks that simultaneously possess the virtues of POMs and frameworks. They have been attracting immense attention because of their diverse architectures and charming topologies and also due to their probable application prospects in the areas of catalysis, separation, and energy storage. In this review, the recent progress in POM-based frameworks including POM-based metal organic frameworks (PMOFs), POM-based covalent organic frameworks (PCOFs), and POM-based supramolecular frameworks (PSFs) is systematically summarized. The design and construction of a POM-based framework and its application in photocatalysis and photothermal catalysis are introduced, respectively. Finally, our brief outlooks on the current challenges and future development of POM-based frameworks for photocatalysis and photothermal catalysis are provided.
Collapse
Affiliation(s)
- Xiaofei Chen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China.
| | - Hongzhuo Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China.
| | - Xinjian Shi
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|