May AM, Deegbey M, Fosu EA, Danilov EO, Castellano FN, Jakubikova E, Dempsey JL. Photophysical Characterization and Excited State Dynamics of Decamethylruthenocenium.
J Phys Chem A 2025;
129:1558-1565. [PMID:
39904750 DOI:
10.1021/acs.jpca.4c06564]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Understanding the landscape of molecular photocatalysis is vital to enable efficient conversion of feedstock molecules to targeted products and inhibit off-cycle reactivity. In this study, the light-promoted reactivity of [RuCp*2]+ was explored via electronic structure, photophysical, and photostability studies and the reactivity of [RuCp*2]+ within a photocatalytic hydrogen evolution cycle was assessed. TD-DFT calculations support the assignment of a low-energy ligand-to-metal charge transfer transition (LMCT) centered at 500 nm, where an electron from a ligand-based orbital delocalized across both Cp* ligands is promoted to a dx2-y2-based β-LUMO orbital. Upon irradiating the LMCT absorption feature, ultrafast transient absorption spectroscopy measurements show that an initial excited state (τ1 = 1.3 ± 0.1 ps) is populated, which undergoes fast relaxation to a longer-lived state (τ2 = 12.0 ± 0.9 ps), either via internal conversion or vibrational relaxation. Despite the short-lived nature of these excited states, bulk photolysis of [RuCp*2]+ demonstrates that photochemical conversion to decomposition products is possible upon prolonged illumination. Collectively, these studies reveal that [RuCp*2]+ undergoes light-driven decomposition, highlighting the necessity to construct molecular photocatalytic systems resistant to off-cycle reactivity in both the ground and excited states.
Collapse