1
|
Deng B, Chen Q, Liu Y, Ullah Khan A, Zhang D, Jiang T, Wang X, Liu N, Li H, Mao B. Quasi-type-II Cu-In-Zn-S/Ni-MOF heterostructure with prolonged carrier lifetime for photocatalytic hydrogen production. J Colloid Interface Sci 2024; 662:1016-1025. [PMID: 38387363 DOI: 10.1016/j.jcis.2024.02.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Visible-driven photocatalytic hydrogen production using narrow-bandgap semiconductors has great potential for clean energy development. However, the widespread use of these semiconductors is limited due to problems such as severe charge recombination and slow surface reactions. Herein, a quasi-type-II heterostructure was constructed by combining bifunctional Ni-based metal-organic framework (Ni-MOF) nanosheets with BDC (1,4-benzenedicarboxylic acid) linker coupled with Cu-In-Zn-S quantum dots (CIZS QDs). This heterostructure exhibited a prolonged charge carrier lifetime and abundant active sites, leading to significantly improved hydrogen production rate. The optimized rate achieved by the CIZS/Ni-MOF heterostructure was 2642 μmol g-1 h-1, which is 5.28 times higher than that of the CIZS QDs. This improved performance can be attributed to the quasi-type-II band alignment between the CIZS QDs and Ni-MOF, which facilitates effective delocalization of the photogenerated electrons within the system. Additional photoelectrochemical tests confirmed the well-maintained photoluminescence and prolonged charge carrier lifetime of the CIZS/Ni-MOF heterostructure. This study provides valuable insights into the use of multifunctional MOFs in the development of highly efficient composite photocatalysts, extending beyond their role in light harvesting and charge separation.
Collapse
Affiliation(s)
- Bangya Deng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qitao Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanhong Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Dongxu Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Tianyao Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xianjin Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Naiyun Liu
- Institute of Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Haitao Li
- Institute of Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Baodong Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
Nie L, Chen H, Wang J, Yang Y, Fang C. Enhanced Visible-Light H 2O 2 Production over Pt/g-C 3N 4 Schottky Junction Photocatalyst. Inorg Chem 2024; 63:4770-4782. [PMID: 38409795 DOI: 10.1021/acs.inorgchem.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Photocatalytic for hydrogen peroxide (H2O2) production is thought as a promising technology owing to its clean and green properties with the cheap and easily available raw materials of H2O and O2. Herein, Pt/g-C3N4 Schottky junction photocatalysts with ultralow Pt contents (0.025-0.1 wt %) were successfully fabricated by an impregnation-reduction method. It can efficiently reduce O2 to generate H2O2 without a sacrificial agent under visible-light irradiation. The yield of H2O2 produced over Pt0.05/g-C3N4 with the optimal 0.05 wt % Pt reached 31.82 μM, which was 2.46 times that of g-C3N4 and higher than most of those in the literature. It also showed good stability in three repeated tests. The deposition of highly dispersed metal Pt nanoparticles with low and limited content can expose enough active Pt atoms, significantly enhance the separation efficiency of photogenerated carriers, and reduce its negative effect on H2O2 decomposition, resulting in improved and outstanding efficiency of H2O2 production. The ·O2- radicals were found to be the main active species. The mechanism of photocatalytic H2O2 production was confirmed to be a two-step single electron route (O2 + e-→ ·O2- → H2O2).
Collapse
Affiliation(s)
- Longhui Nie
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Heng Chen
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jing Wang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yiqiong Yang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Caihong Fang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
3
|
Liu H, Pan J, E K, Guan Y, Gou W, Wang P, Hussain S, Du Z, Ma C. Selective efficient photocatalytic degradation of antibiotics and direct Z-type migration pathway for hierarchical core-shell TiO 2/g-C 3N 4 composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4582-4594. [PMID: 38105324 DOI: 10.1007/s11356-023-31358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Constructing superior Z-type photocatalytic heterojunction is beneficial to effectively enlarge interface contact, improve the photo-generated carrier separation rate, and retain the high redox ability. In this work, we designed a hierarchical core-shell g-C3N4/TiO2 structure to build Z-type heterojunction via combining simple template method and pyrolysis process. A close-knit Z-type heterojunction was constructed using TiO2 as a thick core and g-C3N4 as an ultra-thin shell. The effects of lamp source, wavelength, tetracycline (TC) concentration, and photocatalyst dose on the degradation performance on TC of g-C3N4/TiO2 were inspected. 0.1TiO2/g-C3N4 photocatalyst had the best degradation rate and highest removal rate within 30 min, and its degradation rate was about 49, 23, and 5 times than pure g-C3N4, TiO2, and commercial TiO2/g-C3N4 in respect. Moreover, compared with degradation ability under Xenon lamp, LED irradiation for g-C3N4/TiO2 composites showed a remarkable selective degradation. The fast and efficient Z-type transfer pathway of 0.1 g-C3N4/TiO2 was realized by forming an optimized interface and abundant surface active sites ascribed to the combined action of thick TiO2 core and ultra-thin g-C3N4 shell. In addition, the degradation intermediates were analyzed by LC-MS and suggested pathways of degradation. The work could provide novel design concept to obtain reliable Z-type photocatalysts with hierarchical core-shell structure applied in degradation of antibiotic wastewater.
Collapse
Affiliation(s)
- Hu Liu
- School of Materials Science and Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Jianmei Pan
- School of Materials Science and Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang, 212013, People's Republic of China.
| | - Keyu E
- School of Materials Science and Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Yi Guan
- School of Materials Science and Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Wenbo Gou
- School of Materials Science and Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Peng Wang
- School of Materials Science and Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Shahid Hussain
- School of Materials Science and Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Ze Du
- School of Materials Science and Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Chengfei Ma
- School of Materials Science and Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang, 212013, People's Republic of China
| |
Collapse
|
4
|
Yang Z, Peng X, Zheng J, Wang Z. Plasma synthesis of oxygen vacancy-rich CuO/Cu 2(OH) 3NO 3 heterostructure nanosheets for boosting degradation performance. Phys Chem Chem Phys 2023; 25:29108-29119. [PMID: 37869910 DOI: 10.1039/d3cp03918h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Defect regulation and the construction of a heterojunction structure are effective strategies to improve the catalytic activity of catalysts. In this work, the rapid conversion of CuO to Cu2(OH)3NO3 was achieved by fixing nitrogen in air as NO3- using dielectric barrier discharge (DBD) plasma. This innovative approach resulted in the successful synthesis of a CuO/Cu2(OH)3NO3 nanosheet heterostructure. Notably, the samples prepared using plasma exhibit thinner thickness and larger specific surface area. Importantly, oxygen vacancies are introduced, simultaneously forming heterojunction interfaces within the CuO/Cu2(OH)3NO3 structure. CuO/Cu2(OH)3NO3 using plasma effectively degraded 96% of methyl orange within 8 min in the dark. The degradation rate is 81 and 23 times that of CuO and Cu2(OH)3NO3 using hydrothermal methods, respectively. The high catalytic activity is attributed to the large specific surface area, the abundance of active sites, and the synergy between oxygen vacancies and the strong heterojunction interfacial interactions, which accelerate the transfer of electrons and the production of reactive oxygen species (˙O2- and ˙OH). The mechanism of plasma preparation was proposed on account of microstructure characterization and online mass spectroscopy, which indicated that gas etching, gas expansion, and the repulsive force of electrons play key roles in plasma exfoliation.
Collapse
Affiliation(s)
- Zikun Yang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, China.
| | - Xiangfeng Peng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, China.
| | - Jingxuan Zheng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, China.
| | - Zhao Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, China.
| |
Collapse
|
5
|
Qi F, Li H, Chen G, Peng S, Luo X, Xiong S, Zhu H, Shuai C. A CuS@g-C 3N 4 heterojunction endows scaffold with synergetic antibacterial effect. Colloids Surf B Biointerfaces 2023; 230:113512. [PMID: 37595378 DOI: 10.1016/j.colsurfb.2023.113512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Graphitic carbon nitride (g-C3N4) had aroused tremendous attention in photodynamic antibacterial therapy due to its excellent energy band structure and appealing optical performance. Nevertheless, the superfast electron-hole recombination and dense biofilm formation abated its photodynamic antibacterial effect. To this end, a nanoheterojunction was synthesized via in-situ growing copper sulfide (CuS) on g-C3N4 (CuS@g-C3N4). On the one hand, CuS could form Fermi level difference with g-C3N4 to accelerate carrier transfer and thus facilitate electron-hole separation. On the other hand, CuS could respond near-infrared light to generate localized thermal to disrupt biofilm. Then the CuS@g-C3N4 nanoparticle was introduced into the poly-l-lactide (PLLA) scaffold. The photoelectrochemistry results demonstrated that the electron-hole separation efficiency was apparently enhanced and thereby brought an approximate sevenfold increase in reactive oxygen species (ROS) production. The thermal imaging indicated that the scaffold possesses a superior photothermal effect, which effectively eradicated the biofilm by disrupting its extracellular DNA and thereby facilitated to the entry of ROS. The entered ROS could effectively kill the bacteria by causing protein, K+, and nucleic acid leakage and glutathione consumption. As a consequence, the scaffold displayed an antibacterial rate of 97.2% and 98.5% against E. coli and S. aureus, respectively.
Collapse
Affiliation(s)
- Fangwei Qi
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Huixing Li
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Gang Chen
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xingrui Luo
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shiyu Xiong
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Hua Zhu
- School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Cijun Shuai
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
6
|
Jin C, Zhi C, Sun Z, Rao S, Liu Q, Jiang Y, Liu L, Sun Y, Yang J. In Situ Fabrication of a 2D/2D MXene/CN Heterojunction for Photothermally Assisted Photocatalytic Sterilization under Visible Light Irradiation. Inorg Chem 2023; 62:15700-15710. [PMID: 37705217 DOI: 10.1021/acs.inorgchem.3c02523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Constructing an efficient visible light-responsive antibacterial material for water treatment remains a principal goal yet is a huge challenge. Herein, a 2D/2D heterojunction composite with robust interfacial contact, named MXene/CN (MCN), was controllably fabricated by using a urea molecule intercalated into MXene following an in situ calcination method, which can realize the rapid separation and migration of photogenerated carriers under visible light irradiation and significantly improve the carrier concentration of the MXene surface, thus generating more reactive oxygen species. The generation of heat induced by MXene could also increase photogenic electron activity to facilitate the photocatalytic reaction using in situ time-resolved photoluminescence characterization. The visible light-activated germicide exhibits a sterilization efficacy against Escherichia coli of 99.70%, higher than those of pure CN (60.21%) and MXene (31.75%), due to the effect of photothermally assisted photocatalytic treatment. This work is an attempt to construct a visible light-driven antimicrobial material using Schottky junctions achieving photothermally assisted photocatalytic disinfection.
Collapse
Affiliation(s)
- Cheng Jin
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chuang Zhi
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhongti Sun
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shaosheng Rao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qinqin Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yexin Jiang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yingjie Sun
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|