1
|
Fard NE, Ali NS, Saady NMC, Albayati TM, Salih IK, Zendehboudi S, Harharah HN, Harharah RH. A review on development and modification strategies of MOFs Z-scheme heterojunction for photocatalytic wastewater treatment, water splitting, and DFT calculations. Heliyon 2024; 10:e32861. [PMID: 39027550 PMCID: PMC11255594 DOI: 10.1016/j.heliyon.2024.e32861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Increasing water pollution and decreasing energy reserves have emerged as growing concerns for the environment. These pollution are due to the dangerous effects of numerous pollutants on humans and aquatic organisms, such as hydrocarbons, biphenyls, pesticides, dyes, pharmaceuticals, and metal ions. On the other hand, the need for a clean environment, finding alternatives to fossil and renewable fuels is very important. Hydrogen (H2) is regarded as a viable and promising substitute for fossil fuels, and a range of methodologies have been devised to generate this particular source of energy. Metal-organic frameworks (MOFs) are a new generation of nanoporous coordination polymers whose crystal structure is composed of the juxtaposition of organic and inorganic constituent units. Due to their flexible nature, regular structure, and high surface area, these materials have attracted much attention for removing various pollutants from water and wastewater, and water splitting. MOFs Z-scheme heterojunctions have been identified as an economical and eco-friendly method for eliminating pollutants from wastewater systems, and producing H2. Their low-cost synthesis and unique properties increase their application in various energy and environment fields. The heterojunctions possess diverse properties, such as exceptional surface area, making them ideal for degradation and separation. The development and formulation of Z-scheme heterojunctions photocatalytic systems using MOFs, which possess stable and potent redox capability, have emerged as a successful approach for addressing environmental pollution and energy shortages in recent times. Through the utilization of the benefits offered by MOFs Z-scheme heterojunctions photocatalysts, such as efficient separation and migration of charge carriers, extensive spectrum of light absorption, among other advantages, notable enhancements can be attained. This review encompasses the synthesis techniques, structure, and properties of MOFs Z-scheme heterojunctions, and their extensive use in treating various wastewaters, including dyes, pharmaceuticals, and heavy metals, and water splitting. Also, it provides an overview of the mechanisms, pathways, and various theoretical and practical aspects for MOFs Z-scheme heterojunctions. Finally, it thoroughly assesses existing challenges and suggests further research on the promising applications of MOFs Z-scheme in industrial-scale wastewater treatment.
Collapse
Affiliation(s)
- Narges Elmi Fard
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nisreen S. Ali
- Materials Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
| | - Noori M. Cata Saady
- Department of Civil Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Talib M. Albayati
- Department of Chemical Engineering, University of Technology- Iraq, 52 Alsinaa St., PO Box, 35010, Baghdad, Iraq
| | - Issam K. Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Hamed N. Harharah
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Kingdom of Saudi Arabia
| | - Ramzi H. Harharah
- Department of Chemical and Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Chowdhury S, Sharma A, Das PP, Rathi P, Siril PF. Fine-tuning covalent organic frameworks for structure-activity correlation via adsorption and catalytic studies. J Colloid Interface Sci 2024; 665:988-998. [PMID: 38574587 DOI: 10.1016/j.jcis.2024.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
In applications utilizing Covalent Organic Frameworks (COFs) for adsorption, the interplay between crystallinity (vis-à-vis surface area) and active sites still remains ambiguous. To address this, the present study introduces three isoreticular COFs-COP-N18 (covalent organic polymer with short-range order), COF-N18 (COF having long-range order), and COF-N27 (semicrystalline COF with pyridyl heteroatoms)-to explore this duality. Through systematic variations in structural order, pore volume, and pore-wall nitrogen content, we aim to establish a structure-activity relationship (SAR) for these COFs via adsorption and catalysis, using CO2 and I2 as probes. Our investigation highlights the positive influence of crystallinity, surface area, and pore volume in adsorption as well as catalysis. However, the presence of heteroatoms manifests complex behavior in CO2 adsorption and CO2 cycloaddition reactions with epoxides. COF-N18 and COF-N27 showed comparable CO2 uptake capacities at different temperatures (273, 293, and 313 K) and ∼1 bar pressure. Additionally, CO2 cycloaddition reactions were performed with substrates possessing different polarities (epichlorohydrin, 1,2-epoxydodecane) to elucidate the role of COF surface polarity. Further investigation into iodine adsorption was performed to understand the impact of COF structural features on the modes of adsorption and adsorption kinetics. Improvements in COF-crystallinity results in faster average iodine uptake rate at 80% (K80% = 1.79 g/h) by COF-N18. Whereas, heteroatom doping slows down iodine adsorption kinetics (0.35 g/h) by prolonging the adsorption process up to 72 h. Overall, this study advances our understanding of COFs as adsorbents and catalysts, providing key insights into their SAR while emphasizing structural fine-tuning as a key factor for impactful environmental applications.
Collapse
Affiliation(s)
- Sumanta Chowdhury
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi-175005, Himachal Pradesh, India.
| | - Abhishek Sharma
- School of Physics and CRANN Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Partha Pratim Das
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Preeti Rathi
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi-175005, Himachal Pradesh, India
| | - Prem Felix Siril
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi-175005, Himachal Pradesh, India.
| |
Collapse
|
3
|
Patra R, Sarma D. Silver Nanoparticle-Functionalized Postsynthetically Modified Thiol MOF UiO-66-NH-SH for Efficient CO 2 Fixation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10196-10210. [PMID: 38359330 DOI: 10.1021/acsami.3c18549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Thiols are essential functional groups imparting unique properties, such as reactivity and selectivity, to many vital enzymes and biomolecules. The integration of electronically soft thiol groups within metal-organic frameworks (MOFs) yields elevated reactivity and a pronounced affinity for soft metal ions. However, the scarcity of thiol-based ligands and synthetic challenges hinder the advancement of thiol-based MOFs. To bypass the difficulties of synthesizing thiol MOFs by a direct reaction between thiol-based ligands and corresponding metal salts, postsynthetic modification (PSM) of MOFs is an efficient strategy to introduce thiol functionality. Herein, we have introduced Ag nanoparticles in postsynthetically modified thiol MOFs UiO-66-NH-SH (1) (synthesized by reaction between UiO-66-NH2 and thioglycolic acid) and UiO-66-NH-SH (2) (synthesized by reaction between UiO-66-NH2 and 3-mercaptopropionic acid) to synthesize a series of heterogeneous catalysts for CO2 fixation. Catalysts Cat 1-2 and Cat 3 - 4 were synthesized from UiO-66-NH-SH (1) and UiO-66-NH-SH (2), respectively, by using varying concentrations of silver (AgNO3). Catalyst Ag@UiO-66-NH-SH (1) (Ag = 3.45%; namely Cat 2) shows the highest efficiency for the catalytic conversion of propargylic alcohol and terminal epoxide to the corresponding cyclic carbonates. Finally, a rationalized reaction mechanism is proposed by correlating our results with the current literature. This work presents a viable strategy to utilize the thiol functionality of MOFs (avoiding the complexities associated with synthesizing thiol MOFs directly from thiol ligands) as a platform for introducing catalytically active metal centers and applying them as a heterogeneous catalyst for CO2 fixation reactions.
Collapse
Affiliation(s)
- Rajesh Patra
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Debajit Sarma
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| |
Collapse
|
4
|
Sharifzadeh Z, Razavi SAA, Morsali A. Functionalization of Defective Zr-MOFs for Water Decontamination: Mechanistic Insight into the Competitive Roles of -NH 2 and -SH Sites in the Removal of Hg(II) Ions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38377577 DOI: 10.1021/acsami.3c15863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Functional metal-organic frameworks (MOFs), especially those based on sulfur and nitrogen atoms, were frequently applied for the removal of Hg(II) ions. However, a systematic study on the cooperative or competitive roles of -SH and -NH2 functions in the presence of secondary mechanisms (proton transfer and redox) is still rare. In this work, the UiO-66 framework (Zr6(OH)4O4(BDC)6, BDC2- = benzene-1,4-dicarboxylate) was decorated with functional monocarboxylate linkers including glycine (Gly), mercaptopropionic acid (Mer), and cysteine (Cys). Due to the molecular similarity of these functional linkers, the coordination affinity between the amine and thiol sites with Hg(II) ions can be compared, and the effect of proton transfer and redox mechanisms on the possible thiol···Hg(II) and amine···Hg(II) interactions can be investigated. The results show that the Cys@UiO-66 framework can adsorb 1288 mg g-1 of Hg(II), while Mer@UiO-66 and Gly@UiO-66 can adsorb 593 and 313 mg g-1 at pH = 7 and 500 ppm, respectively. This is due to the facts that both the amine and the thiol functions of the Cys@UiO-66 framework show synergism in Hg(II) removal, and the secondary mechanisms reduce the affinity of thiol in Mer@UiO-66 and amine in Gly@UiO-66 frameworks in the removal process of Hg(II) ions. Free -SH sites in Mer@UiO-66 undergo a redox convert to -SO3H groups, and free protonated -NH2 sites in Gly@UiO-66 do not fully deprotonate during Hg(II) removal. Yet, in the case of Cys@UiO-66, free protonated -NH2 sites are fully deprotonated, and free SH sites did not convert to -SO3H groups during Hg(II) removal. These observations show that the redox and proton transfer mechanisms can negatively affect the adsorption capacity of functional MOFs containing free -SH and -NH2 groups. So, not only the functionalization but also control over secondary mechanisms in the removal process are necessary parameters to improve the affinity between functional MOFs and Hg(II) ions.
Collapse
Affiliation(s)
- Zahra Sharifzadeh
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| | - Sayed Ali Akbar Razavi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| |
Collapse
|
5
|
Patra R, Mondal S, Sarma D. Thiol and thioether-based metal-organic frameworks: synthesis, structure, and multifaceted applications. Dalton Trans 2023; 52:17623-17655. [PMID: 37961841 DOI: 10.1039/d3dt02884d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Metal-organic frameworks (MOFs) are unique hybrid porous materials formed by combining metal ions or clusters with organic ligands. Thiol and thioether-based MOFs belong to a specific category of MOFs where one or many thiols or thioether groups are present in organic linkers. Depending on the linkers, thiol-thioether MOFs can be divided into three categories: (i) MOFs where both thiol or thioether groups are part of the carboxylic acid ligands, (ii) MOFs where only thiol or thioether groups are present in the organic linker, and (iii) MOFs where both thiol or thioether groups are part of azolate-containing linkers. MOFs containing thiol-thioether-based acid ligands are synthesized through two primary approaches; one is by utilizing thiol and thioether-based carboxylic acid ligands where the bonding pattern of ligands with metal ions plays a vital role in MOF formation (HSAB principle). MOFs synthesized by this approach can be structurally differentiated into two categories: structures without common structural motifs and structures with common structural motifs (related to UiO-66, UiO-67, UiO-68, MIL-53, NU-1100, etc.). The second approach to synthesize thiol and thioether-based MOFs is indirect methods, where thiol or thioether functionality is introduced in MOFs by techniques like post-synthetic modifications (PSM), post-synthetic exchange (PSE) and by forming composite materials. Generally, MOFs containing only thiol-thioether-based ligands are synthesized by interfacial assisted synthesis, forming two-dimensional sheet frameworks, and show significantly high conductivity. A limited study has been done on MOFs containing thiol-thioether-based azolate ligands where both nitrogen- and sulfur-containing functionality are present in the MOF frameworks. These materials exhibit intriguing properties stemming from the interplay between metal centres, organic ligands, and sulfur functionality. As a result, they offer great potential for multifaceted applications, ranging from catalysis, sensing, and conductivity, to adsorption. This perspective is organised through an introduction, schematic representations, and tabular data of the reported thiol and thioether MOFs and concluded with future directions.
Collapse
Affiliation(s)
- Rajesh Patra
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Sumit Mondal
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Debajit Sarma
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| |
Collapse
|
6
|
Moore JM, Crom AB, Feldblyum JI, Genna DT. Disulfide-Driven Pore Functionalization of Metal-Organic Frameworks. Chemistry 2023; 29:e202302144. [PMID: 37486291 DOI: 10.1002/chem.202302144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
Post-synthetic modification (PSM) imparts additional functionality to metal-organic frameworks (MOFs) that is often difficult to access using solvothermal synthesis. As such, expanding the repertory of PSM reactions available to the practitioner is of increased importance for the generation of materials tailored for desired applications. Herein, a method is described for the protecting group-free installation of diverse functional groups within the pores of a MIL-53(Al) analogue via disulfide bond formation. The majority of the reactions proceed with thiol-to-disulfide conversions ranging from high to nearly quantitative. The disulfide bonds are stable in various solvents and can be cleaved in the presence of a reducing agent.
Collapse
Affiliation(s)
- Jennifer M Moore
- Department of Chemical and Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
| | - Audrey B Crom
- Department of Chemistry, The University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Jeremy I Feldblyum
- Department of Chemistry, The University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Douglas T Genna
- Department of Chemical and Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
| |
Collapse
|
7
|
Li X, Su Y, Qin Y, Huang F, Mei S, He Y, Peng C, Ding L, Zhang Y, Peng Y, Deng Z. Spatially Confined Silver Nanoparticles in Mercapto Metal-Organic Frameworks to Compartmentalize Li Deposition Toward Anode-Free Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303489. [PMID: 37317960 DOI: 10.1002/adma.202303489] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Indexed: 06/16/2023]
Abstract
As the promising next-generation energy storage solution, lithium metal battery (LMB) has gained great attention but still suffers from troubles associated with the highly active metallic lithium. Herein, it is aimed to develop an anode-free LMB engaging no Li disk or foil by modifying the Cu current collector with mercapto metal-organic frameworks (MOFs) impregnating Ag nanoparticles (NPs). While the polar mercapto groups facilitate and guide Li+ transport, the highly lithiophilic Ag NPs help to enhance the electric conductivity and lower the energy barrier of Li nucleation. Furthermore, the MOF pores allow compartmentalizing bulk Li into a 3D matrix Li storage so that not only the local current density is reduced, but also is the plating/stripping reversibility greatly enhanced. As a result, full cells pairing the prelithiated Ag@Zr-DMBD/Cu anodes with LiFePO4 cathodes demonstrate a high initial specific capacity of 159.8 mAh g-1 , first-cycle Coulombic efficiency of 96.6%, and long-term cycling stability over 1000 cycles with 99.3% capacity retention at 1 C. This study underlines the multi-aspect functionalization of MOFs to impart lithiophilicity, polarity, and porosity to achieve reversible Li plating/stripping and paves the way for realizing high-performance anode-free LMBs through exquisite modification of the Cu current collector.
Collapse
Affiliation(s)
- Xinjian Li
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Yanhui Su
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Yongze Qin
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Fangding Huang
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Shiwei Mei
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Ying He
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - ChengYuan Peng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Leyu Ding
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Yanzhi Zhang
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Yang Peng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Zhao Deng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
8
|
Xie BX, Wang HS, Zheng HQ, Xu J, Chen L, Zhang FZ, Wang YL, Lin ZJ, Lin RG. Boosting Antibacterial Photodynamic Therapy in a Nanosized Zr MOF by the Combination of Ag NP Encapsulation and Porphyrin Doping. Inorg Chem 2023; 62:13892-13901. [PMID: 37587720 DOI: 10.1021/acs.inorgchem.3c01785] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Antibacterial photodynamic therapy (aPDT) is regarded as one of the most promising antibacterial therapies due to its nonresistance, noninvasion, and rapid sterilization. However, the development of antibacterial materials with high aPDT efficacy is still a long-standing challenge. Herein, we develop an effective antibacterial photodynamic composite UiO-66-(SH)2@TCPP@AgNPs by Ag encapsulation and 4,4',4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) (TCPP) dopant. Through a mix-and-match strategy in the self-assembly process, 2,5-dimercaptoterephthalic acid containing -SH groups and TCPP were uniformly decorated into the UiO-66-type framework to form UiO-66-(SH)2@TCPP. After Ag(I) impregnation and in situ UV light reduction, Ag NPs were formed and encapsulated into UiO-66-(SH)2@TCPP to get UiO-66-(SH)2@TCPP@AgNPs. In the resulting composite, both Ag NPs and TCPP can effectively enhance the visible light absorption, largely boosting the generation efficiency of reactive oxygen species. Notably, the nanoscale size enables it to effectively contact and be endocytosed into bacteria. Consequently, UiO-66-(SH)2@TCPP@AgNPs show a very high aPDT efficacy against Gram-negative and Gram-positive bacteria as well as drug-resistant bacteria (MRSA). Furthermore, the Ag NPs were firmly anchored at the framework by the high density of -SH moieties, avoiding the cytotoxicity caused by the leakage of Ag NPs. By in vitro experiments, UiO-66-(SH)2@TCPP@AgNPs show a very high antibacterial activity and good biocompatibility as well as the potentiality to promote cell proliferation.
Collapse
Affiliation(s)
- Bao-Xuan Xie
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Hai-Shuang Wang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Hui-Qian Zheng
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Jin Xu
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Li Chen
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Fang-Zhong Zhang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Yu-Lin Wang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Zu-Jin Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Rong-Guang Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| |
Collapse
|