1
|
Neukirch L, Kulas MD, Holstein JJ, Clever GH. Non-Templated Assembly of D 5h-Symmetric Pd 5L 10 Rings by Precise Ligand Angle Adjustment. Chemistry 2024; 30:e202400132. [PMID: 38441728 DOI: 10.1002/chem.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 03/20/2024]
Abstract
We report a series of Pd(II)nL2n coordination rings for which nuclearity is controlled by the binding angle of the corresponding bis-monodentate bridging ligands. Judicious choice of the angle within a family of rather rigid ligands allowed for the first-time to synthesize a homoleptic five-membered Pd5L10 ring that does not require any template to form. We demonstrate that control over the ring size is maintained both in the solid-, solution-, and gas-phase. Two X-ray structures of five-membered rings from ligands with ideal angles (yielding a perfect pentagonal ring) vs. suboptimal angles (resulting in a highly distorted structure) illustrate the importance of the correct ligand geometry. A mathematical model for estimating the expected ring size based on the ligand angle was derived and DFT computations show that ring-strain is the major factor determining the assembly outcome.
Collapse
Affiliation(s)
- Laura Neukirch
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Milan D Kulas
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
2
|
Lai YL, Xie M, Zhou XC, Wang XZ, Zhu XW, Luo D, Zhou XP, Li D. Precise Post-Synthetic Modification of Heterometal-Organic Capsules for Selectively Encapsulating Tetrahedral Anions. Angew Chem Int Ed Engl 2024; 63:e202402829. [PMID: 38380830 DOI: 10.1002/anie.202402829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
Post-synthetic modification plays a crucial role in precisely adjusting the structure and functions of advanced materials. Herein, we report the self-assembly of a tubular heterometallic Pd3Cu6L16 capsule that incorporates Pd(II) and CuL1 metalloligands. This capsule undergoes further modification with two tridentate anionic ligands (L2) to afford a bicapped Pd3Cu6L16L22 capsule with an Edshammer polyhedral structure. By employing transition metal ions, acid, and oxidation agents, the bicapped capsule can be converted into an uncapped one. This uncapped form can then revert back to the bicapped structure on the addition of Br- ions and a base. Interestingly, introducing Ag+ ions leads to the removal of one L2 ligand from the bicapped capsule, yielding a mono-capped Pd3Cu6L16L2 structure. Furthermore, the size of the anions critically influences the precise control over the post-synthetic modifications of the capsules. It was demonstrated that these capsules selectively encapsulate tetrahedral anions, offering a novel approach for the design of intelligent molecular delivery systems.
Collapse
Affiliation(s)
- Ya-Liang Lai
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xue-Zhi Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xiao-Wei Zhu
- School of Chemistry and Environment, Guangdong Engineering Technology Developing Center of High-Performance CCL, Jiaying University, Meizhou, Guangdong 514015, PR China
| | - Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
3
|
Wang J, Jiang Z, Yin JF, Zhao H, Dong Q, Li K, Zhong W, Liu D, Yuan J, Yin P, Li Y, Lin Y, Chen M, Wang P. Strain-Induced Heteromorphosis Multi-Cavity Cages: Tension-Driven Self-Expansion Strategy for Controllable Enhancement of Complexity in Supramolecular Assembly. Angew Chem Int Ed Engl 2024; 63:e202317674. [PMID: 38055187 DOI: 10.1002/anie.202317674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Coordinative supramolecular cages with adjustable cavities have found extensive applications in various fields, but the cavity modification strategies for multi-functional structures are still challenging. Here, we present a tension-driven self-expansion strategy for construction of multi-cavity cages with high structural complexity. Under the regulation of strain-induced capping ligands, unprecedented heteromorphosis triple-cavity cages S2 /S4 were obtained based on a metallo-organic ligand (MOL) scaffold. The heteromorphosis cages exhibited significant higher cavity diversity than the homomorphous double-cavity cages S1 /S3 ; all of the cages were thoroughly characterized through various analytical techniques including (1D and 2D) NMR, ESI-MS, TWIM-MS, AFM, and SAXS analyses. Furthermore, the encapsulation of porphyrin in the cavities of these multi-cavity cages were investigated. This research opens up new possibilities for the architecture of heteromorphosis supramolecular cages via precisely controlled "scaffold-capping" assembly with preorganized ligands, which could have potential applications in the development of multifunctional structures with higher complexity.
Collapse
Affiliation(s)
- Jun Wang
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhilong Jiang
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jia-Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - He Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Qiangqiang Dong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Kaixiu Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Wanying Zhong
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Die Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yifan Lin
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Mingzhao Chen
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Pingshan Wang
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|