1
|
Liu J, Song W, Niu H, Lu Y, Yang H, Li W, Zhao YZ, Miao Z. Superior Circularly Polarized Luminescence Brightness Achieved with Chiral Heteroleptic Nine-Coordinate Coumarin-Based Tb 3+ Complexes. Inorg Chem 2024; 63:18429-18437. [PMID: 39270127 DOI: 10.1021/acs.inorgchem.4c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
In order to facilitate the practical application of circularly polarized luminescence (CPL) active molecules, the CPL brightness (BCPL) must be optimized. We have applied a binary modular strategy to synthesize two chiral organo-Tb3+ complexes, [Tb(Coum)3(1R,2R-Ph-PyBox)] (2) and [Tb(Coum)3(1S,2S-Ph-PyBox)] (5), combining 3-acetyl-4-hydroxy-coumarin (Coum) and enantiopure 2,6-bis(4-phenyl-2-oxazolin-2-yl) pyridine (1R,2R/1S,2S-Ph-PyBox). The photophysical properties of these novel complexes have been fully characterized. The combined point-chiral induction capability of chiral bis(oxazoline) derivatives and the outstanding photophysical properties of the coumarin-derived ligand have resulted in an intense excited-state chiroptical activity (|glum| = 0.097-0.103) for both Tb3+ enantiomers, with a bright Tb3+-centered high-purity green emission (ΦPL = 74%) and enhanced antenna-centered absorption behavior (ε320 nm = 47820-47940 M-1 cm-1). A superior BCPL (1132.7-1205.8 M-1 cm-1 at 5D4 → 7F5) has been established for complexes 2 and 5. The strategy adopted in this work provides a new route to chiroptical organo-Tb3+ luminophores with outstanding comprehensive performance.
Collapse
Affiliation(s)
- Jiaxiang Liu
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Wenqi Song
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Huizhe Niu
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Ying Lu
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Haiyan Yang
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Wentao Li
- College of Big Data and Information Engineering, Institute of Advanced Optoelectronic Materials and Technology, Guizhou University, Guiyang 550025, PR China
| | - Yu-Zhen Zhao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Zongcheng Miao
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, PR China
| |
Collapse
|
2
|
Ji L, Wang J, Li Z, Zhu X, Hu P. Chiral Star-Shaped [Co III3Ln III] Clusters with Enantiopure Schiff Bases: Synthesis, Structure, and Magnetism. Molecules 2024; 29:3304. [PMID: 39064883 PMCID: PMC11279290 DOI: 10.3390/molecules29143304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Two enantiomeric pairs of new 3d-4f heterometallic clusters have been synthesized from two enantiomer Schiff base derivatives: (R/S)-2-[(2-hydroxy-1-phenylethylimino)methyl] phenol (R-/S-H2L). The formulae of the series clusters are Co3Ln(R-L)6 (Ln = Dy (1R), Gd (2R)), Co3Ln (S-L)6 (Ln = Dy (1S), Gd (2S)), whose crystal structures and magnetic properties have been characterized. Structural analysis indicated that the above clusters crystallize in the chiral P213 group space. The central lanthanide ion has a coordination geometry of D3 surrounded by three [CoIII(L)2]- anions using six aliphatic oxygen atoms of L2- featuring a star-shaped [CoIII3LnIII] configuration. Magnetic measurements showed the presence of slow magnetic relaxation with an effective energy barrier of 22.33 K in the DyIII derivatives under a zero-dc field. Furthermore, the circular dichroism (CD) spectra of 1R and 1S confirmed their enantiomeric nature.
Collapse
Affiliation(s)
- Liudi Ji
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China; (L.J.); (J.W.); (Z.L.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Juntao Wang
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China; (L.J.); (J.W.); (Z.L.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Zeyu Li
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China; (L.J.); (J.W.); (Z.L.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaoming Zhu
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China; (L.J.); (J.W.); (Z.L.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Peng Hu
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China; (L.J.); (J.W.); (Z.L.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
3
|
Shukla P, Tarannum I, Roy S, Rajput A, Lama P, Singh SK, Kłak J, Lee J, Das S. Effect of diamagnetic Zn(II) ions on the SMM properties of a series of trinuclear ZnDy 2 and tetranuclear Zn 2Dy 2 (Ln III = Dy, Tb, Gd) complexes: combined experimental and theoretical studies. Dalton Trans 2024; 53:7053-7066. [PMID: 38564260 DOI: 10.1039/d4dt00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To study the effect of diamagnetic ions on magnetic interactions, utilizing a compartmental ligand (Z)-2-(hydroxymethyl)-4-methyl-6-((quinolin-8-ylimino)methyl)phenol (LH2), two different series of ZnII-LnIII complexes, namely the trinuclear series of [DyZn2(L)2(μ2-OAc)2(CH3OH)2]·NO3·MeOH (1), [TbZn2(L)2(μ2-OAc)2(CH3OH)2]·NO3·5MeOH·H2O (2), and [GdZn2(L)2(μ2-OAc)2(CH3OH)2]·NO3·MeOH·CHCl3 (3) and the tetranuclear series of [Dy2Zn2(LH)4(NO3)4(μ2OAc)]·NO3·MeOH·H2O (4), [Tb2Zn2(LH)4(NO3)4(μ2-OAc)]·NO3·MeOH·2H2O (5), and [Gd2Zn2(LH)4(NO3)4(μ2-OAc)]·NO3·MeOH·2H2O (6), were synthesized. Trinuclear ZnII-LnIII complexes 1-3 consist of one LnIII ion sandwiched between two peripheral ZnII ions forming a bent type ZnII-DyIII-ZnII array with an angle of 110.64°. Tetranuclear ZnII-LnIII complexes 4-6 are basically a combination of two dinuclear moieties of [LnZn(LH)2(NO3)2]+ connected by one bidentate bridging acetate ion in μ2-OAc coordination mode. The detailed magnetic analysis reveals that complexes 1 and 4 are single molecule magnets having energy barriers of 34.98 K and 46.71 K with relaxation times (τ0) of 5.05 × 10-4 s and 5.24 × 10-4 s, respectively. Ab initio calculations were employed to analyze the magnetic anisotropy and magnetic exchange interaction between the ZnII and LnIII centers with the aim of gaining better insights into the magnetic dynamics of complexes 1-6.
Collapse
Affiliation(s)
- Pooja Shukla
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure Technology Research and Management, Near Khokhra Circle, Maninagar East, Ahmedabad-380026, Gujarat, India.
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ibtesham Tarannum
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Soumalya Roy
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Amit Rajput
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA, Faridabad 121006, Haryana, India
| | - Prem Lama
- CSIR-Indian Institute of Petroleum, Nanocatalysis Area, LSP Division, Haridwar Road, Mokhampur, Dehradun 248005, India
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Julia Kłak
- Faculty of Chemistry, University of Wroclaw, Wroclaw 50-383, Poland.
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure Technology Research and Management, Near Khokhra Circle, Maninagar East, Ahmedabad-380026, Gujarat, India.
| |
Collapse
|
4
|
Liu J, Zhao Y, Zhang Z, Li M, Song W, Li W, Miao Z. Circularly polarized blue fluorescence based on chiral heteroleptic six-coordinate bis-pyrazolonate-Zn 2+ complexes. Dalton Trans 2024; 53:6625-6630. [PMID: 38517688 DOI: 10.1039/d4dt00086b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Applying molecular design to chiral organo-Zn2+ complexes, a new pair of chiral heteroleptic bis-pyrazolonate-Zn2+ enantiomers [Zn(PMBP)2(1R,2R-Chxn)] (R,R-Zn2+; HPMBP = 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and 1R,2R-Chxn = (1R,2R)-cyclohexane-1,2-diamine) and [Zn(PMBP)2(1S,2S-Chxn)] (S,S-Zn2+; 1S,2S-Chxn = (1S,2S)-cyclohexane-1,2-diamine) have been synthesized and characterized in terms of photophysical and thermodynamic properties. In addition to a small Flack parameter (0.05(3)) associated with the solid-state elucidation of S,S-Zn2+, the circular dichroism (CD) and circularly polarized light (CPL) spectra for the chiral Zn2+ enantiomers show perfect mirror symmetry, establishing that the enantiopure 1,2-diamines successfully induce the optical isomerism of R,R-Zn2+ and S,S-Zn2+. As a result of the combined strong chiral induction capability of chiral 1,2-diamines and excellent photophysical properties of the pyrazolone ligand (PMBP)-, the two Zn2+ enantiomers exhibit high-quality pure blue fluorescence (ΦPL = 9-10%) and significant CPL activity (|glum| = 0.0065-0.0068). The heteroleptic strategy adopted in this study offers a new route to develop high-performance chiroptical luminophores.
Collapse
Affiliation(s)
- Jiaxiang Liu
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, P. R. China
| | - Yuzhen Zhao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, P. R. China
| | - Zhe Zhang
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, P. R. China
| | - Manni Li
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, P. R. China
| | - Wenqi Song
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, P. R. China
| | - Wentao Li
- College of Big Data and Information Engineering, Institute of Advanced Optoelectronic Materials and Technology, Guizhou University, Guiyang 550025, P. R. China.
| | - Zongcheng Miao
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| |
Collapse
|
5
|
Miao L, Liu CM, Kou HZ. {Gd III7} and {Gd III14} Cluster Formation Based on a Rhodamine 6G Ligand with a Magnetocaloric Effect. Molecules 2024; 29:389. [PMID: 38257302 PMCID: PMC10820868 DOI: 10.3390/molecules29020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Heptanuclear {GdIII7} (complex 1) and tetradecanuclear {GdIII14} (complex 2) were synthesized using the rhodamine 6G ligand HL (rhodamine 6G salicylaldehyde hydrazone) and characterized. Complex 1 has a rare disc-shaped structure, where the central Gd ion is connected to the six peripheral GdIII ions via CH3O-/μ3-OH- bridges. Complex 2 has an unexpected three-layer double sandwich structure with a rare μ6-O2- ion in the center of the cluster. Magnetic studies revealed that complex 1 exhibits a magnetic entropy change of 17.4 J kg-1 K-1 at 3 K and 5 T. On the other hand, complex 2 shows a higher magnetic entropy change of 22.3 J kg-1 K-1 at 2 K and 5 T.
Collapse
Affiliation(s)
- Lin Miao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Hui-Zhong Kou
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Liu CM, Sun R, Hao X, Wang BW. Two Pairs of Homochiral Parallelogram-like Dy 4 Cluster Complexes with Strong Magneto-Optical Properties. Inorg Chem 2023. [PMID: 37994798 DOI: 10.1021/acs.inorgchem.3c03118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Two pairs of homochiral Dy(III) tetranuclear cluster complexes derived from (+)/(-)-3-trifluoroacetyl camphor (D-Htfc/L-Htfc), [Dy4(OH)2(L1)4(D-tfc)2(DMF)2]·4DMF (D-1) [H2L1 = (E)-2-(2-hydroxy-3-methoxybenzylideneamino)phenol)]/[Dy4(OH)2(L1)4(L-tfc)2(DMF)2]·4DMF (L-1) and [Dy4(OH)2(L2)4(D-tfc)2(DMF)2]·2H2O·3MeCN (D-2) [H2L2 = (E)-3-(2-hydroxy-3-methoxybenzylideneamino)naphthalen-2-ol]/[Dy4(OH)2(L2)4(L-tfc)2(DMF)2]·2H2O·3MeCN (L-2), were synthesized at room temperature, which have a Dy4 parallelogram-like core. The magnetic studies revealed that D-1 exhibits single-molecule magnet (SMM) behavior under zero dc magnetic field, and its magnetic relaxation has a distinct Raman process in addition to the Orbach process, with the Ueff/k value of 57.5 K and the C value of 28.27 s-1K-2.14; while D-2 displays dual magnetic relaxation behavior at 0 Oe field, with the Ueff/k value 114.8 K for the slow relaxation process (SR) and the C value of 10.656 s-1K-5.80 for the fast relaxation process (FR), respectively. Theoretical calculations indicated that the conjugated groups (phenyl vs naphthyl) of the Schiff base bridging ligands (H2L1 and H2L2) significantly affect the intramolecular magnetic interactions between the Dy3+ ions and ultimately lead to different relaxations. Furthermore, magnetic circular dichroism (MCD) measurements showed that these two pairs of Dy4 enantiomers exhibit strong room temperature magneto-optical Faraday effects; notably, increasing the conjugated group on the Schiff base bridging ligand is beneficial to enhancing the magneto-optical Faraday effects.
Collapse
Affiliation(s)
- Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Rong Sun
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiang Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing-Wu Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|