1
|
Peluzo BMTC, Moura RT, Kraka E. Conformation and Bonding of Lanthanide(III) Trihalides LnX 3 (Ln = La-Lu; X = F, Cl, Br): A Relativistic Local Vibrational Mode Study. Inorg Chem 2024; 63:22445-22463. [PMID: 39531452 DOI: 10.1021/acs.inorgchem.4c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study employed relativistic methods to investigate the connection between the conformation and bonding properties of 45 lanthanide trihalides LnX3 (Ln: La-Lu; X:F, Cl, Br). Our findings reveal several insights. The proper symmetry exhibited by open-shell LnX3 requires the inclusion of spin-orbit coupling, achieved with 2-component relativistic Hamiltonians. Fluorines (LnF3) primarily exhibit pyramidal structures, while chlorides and bromides tend to yield planar conformations. For a given halide, the strength of Ln-X bonds increases across the lanthanide series, another outcome of the lanthanide contraction. Both strength and covalency of Ln-X bonds decrease upon the halide, i.e., LnF3 > LnCl3 > LnBr3. We introduced a novel parameter, the local force constant associated with the dihedral β(X-Ln-X-X), ka(β), which quantifies the resistance of these molecules to conformational changes. We observed a correlation between ka(β) and the covalency of the Ln-X bond, with higher ka(β) values indicating a stronger covalent character. Finally, the degree of pyramidalization in the LnX3 structures is connected to (i) the extent of charge donation within the molecule and (ii) the greater covalency of the Ln-X bond. These findings provide valuable insights into the interplay between the electronic structure and molecular geometry in LnX3.
Collapse
Affiliation(s)
- Barbara M T C Peluzo
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Renaldo T Moura
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraiba, 58397-000 Areia, Paraiba, Brazil
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Wang D, Heng Y, Li T, Ding W, Hou G, Zi G, Walter MD. Influence of 1,2,4-Tri- tert-butylcyclopentadienyl Ligand on the Reactivity of the Thorium Bipyridyl Metallocene [η 5-1,2,4-(Me 3C) 3C 5H 2] 2Th(bipy)]. Inorg Chem 2024; 63:19188-19212. [PMID: 39361540 PMCID: PMC11483809 DOI: 10.1021/acs.inorgchem.4c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
The thorium bipyridyl metallocene (Cp3tBu)2Th(bipy) (1; Cp3tBu = η5-1,2,4-(Me3C)3C5H2) shows a rich reactivity toward a series of small molecules. For example, complex 1 may act as a synthon for the (Cp3tBu)2Th(II) fragment as illustrated by its reactivity toward to CuI, hydrazine derivative (PhNH)2, Ph2E2 (E = S, Se), elemental sulfur (S8) and selenium (Se), organic azides, CS2, and isothiocyanates. Moreover, in the presence of polar multiple bonds, such as those in ketones Ph2CO and (CH2)5CO, aldehydes p-MePhCHO and p-ClPhCHO, seleno-ketone (p-MeOPh)2CSe, nitriles PhCN, Ph2CHCN, C6H11CN, and p-(NC)2Ph, and benzoyl cyanide PhCOCN, C-C coupling occurs to furnish (Cp3tBu)2Th[(bipy)(Ph2CO)] (10), (Cp3tBu)2Th[(bipy)((CH2)5CO)] (11), (Cp3tBu)2Th[(bipy)(p-MePhCHO)] (12), (Cp3tBu)2Th[(bipy)(p-ClPhCHO)] (13), (Cp3tBu)2Th[(bipy){(p-MeOPh)2CSe}] (14), (Cp3tBu)2Th[(bipy)(PhCN)] (16), (Cp3tBu)2Th[(bipy)(Ph2CHCN)] (17), (Cp3tBu)2Th[(bipy)(C6H11CN)] (18), [(Cp3tBu)2Th]2{μ-(bipy)[p-Ph(CN)2](bipy)} (20), and (Cp3tBu)2Th{(bipy)[PhC(CN)O]} (21), respectively. Nevertheless, ketazine (PhCH═N)2 or benzyl nitrile PhCH2CN forms the dimeric complexes [(Cp3tBu)Th]2[μ-NC(Ph)(bipy)]2 (15) and (Cp3tBu)2Th[(bipy){C(═CHPh)NH}] (19), respectively. In contrast, C-N bond cleavage and C-C coupling processes occur upon addition of isonitriles Me3CNC and C6H11NC to 1 to yield the thorium isocyanido amido complexes (Cp3tBu)2Th[4-(Me3C)bipy](NC) (22) and (Cp3tBu)2Th[4-(C6H11)bipy](NC) (23), respectively. Furthermore, a single-electron transfer (SET) process ensues when 1 equiv of CuI is added to 1 to yield the Th(VI) bipyridyl iodide complex (Cp3tBu)2Th(I)(bipy) (3).
Collapse
Affiliation(s)
- Dongwei Wang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tongyu Li
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Technische
Universität Braunschweig, Institut
für Anorganische und Analytische Chemie, Hagenring 30, Braunschweig 38106, Germany
| |
Collapse
|
3
|
Peluzo BMTC, Moura RT, Kraka E. Extraction of uranyl from spent nuclear fuel wastewater via complexation-a local vibrational mode study. J Mol Model 2024; 30:216. [PMID: 38888814 PMCID: PMC11614994 DOI: 10.1007/s00894-024-06000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
CONTEXT The efficient extraction of uranyl from spent nuclear fuel wastewater for subsequent reprocessing and reuse is an essential effort toward minimization of long-lived radioactive waste. N-substituted amides and Schiff base ligands are propitious candidates, where extraction occurs via complexation with the uranyl moiety. In this study, we extensively probed chemical bonding in various uranyl complexes, utilizing the local vibrational modes theory alongside QTAIM and NBO analyses. We focused on (i) the assessment of the equatorial O-U and N-U bonding, including the question of chelation, and (ii) how the strength of the axial U = O bonds of the uranyl moiety changes upon complexation. Our results reveal that the strength of the equatorial uranium-ligand interactions correlates with their covalent character and with charge donation from O and N lone pairs into the vacant uranium orbitals. We also found an inverse relationship between the covalent character of the equatorial ligand bonds and the strength of the axial uranium-oxygen bond. In summary, our study provides valuable data for a strategic modulation of N-substituted amide and Schiff base ligands towards the maximization of uranyl extraction. METHOD Quantum chemistry calculations were performed under the PBE0 level of theory, paired with the relativistic NESCau Hamiltonian, currently implemented in Cologne2020 (interfaced with Gaussian16). Wave functions were expanded in the cc-pwCVTZ-X2C basis set for uranium and Dunning's cc-pVTZ for the remaining atoms. For the bonding properties, we utilized the package LModeA in the local modes analyses, AIMALL in the QTAIM calculations, and NBO 7.0 for the NBO analyses.
Collapse
Affiliation(s)
- Bárbara M T C Peluzo
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX, 75275-0314, USA
| | - Renaldo T Moura
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX, 75275-0314, USA
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraíba, Areia, 58397-000, Paraíba, Brazil
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX, 75275-0314, USA.
| |
Collapse
|
4
|
Bodo F, Erba A, Kraka E, Moura RT. Chemical bonding in Uranium-based materials: A local vibrational mode case study of Cs 2 UO 2 Cl 4 and UCl 4 crystals. J Comput Chem 2024; 45:1130-1142. [PMID: 38279637 DOI: 10.1002/jcc.27311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
The Local Vibrational Mode Analysis, initially applied to diverse molecular systems, was extended to periodic systems in 2019. This work introduces an enhanced version of the LModeA software, specifically designed for the comprehensive analysis of two and three-dimensional periodic structures. Notably, a novel interface with the Crystal package was established, enabling a seamless transition from molecules to periodic systems using a unified methodology. Two distinct sets of uranium-based systems were investigated: (i) the evolution of the Uranyl ion (UO 2 2 + ) traced from its molecular configurations to the solid state, exemplified by Cs 2 UO 2 Cl 4 and (ii) Uranium tetrachloride (UCl 4 ) in both its molecular and crystalline forms. The primary focus was on exploring the impact of crystal packing on key properties, including IR and Raman spectra, structural parameters, and an in-depth assessment of bond strength utilizing local mode perspectives. This work not only demonstrates the adaptability and versatility of LModeA for periodic systems but also highlights its potential for gaining insights into complex materials and aiding in the design of new materials through fine-tuning.
Collapse
Affiliation(s)
- Filippo Bodo
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Alessandro Erba
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| | - Renaldo T Moura
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraiba, Areia, Brazil
| |
Collapse
|
5
|
Antonio JJ, Kraka E. Metal-ring interactions in group 2 ansa-metallocenes: assessed with the local vibrational mode theory. Phys Chem Chem Phys 2024; 26:15143-15155. [PMID: 38647402 DOI: 10.1039/d4cp00225c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ansa-metallocenes, a vital class of organometallic compounds, have attracted significant attention due to their diverse structural motifs and their pivotal roles in catalysis and materials science. We investigated 37 distinct group 2 ansa-metallocenes at the B3LYP-D3/def2-TZVP level of theory. Utilizing local mode force constants derived from our local vibrational mode theory, including a special force constant directly targeting the metal-ring interaction, we could unveil latent structural differences between solvated and non-solvated metallocenophanes and the influence of the solvent on complex stability and structure. We could quantify the intrinsic strength of the metal-cyclopentadienyl (M-Cp) bonds and the influence of the bridging motifs on the stiffness of the Cp-M-Cp angles, another determinant of complex stability. LMA was complemented by the analysis of electronic density, utilizing the quantum theory of atoms in molecules (QTAIM), which confirmed both the impact of solvent coordination on the strength of the M-Cp bond(s) and the influence of the bridging motif on the Cp-M-Cp angles. The specific effect of the ansa-motif on the M-Cp interaction was further elucidated by a comparison with linear/bent metallocene structures. In summary, our results identify the local mode analysis as an efficient tool for unraveling the intricate molecular properties of ansa-metallocenes and their unique structural features.
Collapse
Affiliation(s)
- Juliana J Antonio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314, USA.
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314, USA.
| |
Collapse
|
6
|
Samuvel Michael D, Schreckenbach G. Bis(acyl)phosphide Complexes of U(III)/U(IV): A Case of a Hidden Redox-Active Ligand. Inorg Chem 2024; 63:9711-9714. [PMID: 38749025 DOI: 10.1021/acs.inorgchem.4c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
The recently reported tris(bis(2,4,6-triisopropylbenzoyl)-phosphide)uranium (UIII(trippBAP)3, 2) complex (Inorg. Chem. 2022, 61 (32), 12508-12517) demonstrated a silent 31P NMR spectrum. This complex was described as a U(III) complex with an organic radical ligand fragment. Moreover, the EPR spectrum of 2 was indicative of an organic radical in the ligand framework complexed to uranium, in contrast to that of UIV(mesBAP)4, 1. Herein, with the help of relativistic density functional theory (DFT) calculations, the electronic structures of 1, 2, and U(mesBAP)3 (4) are examined in an effort to understand the unusual 31P NMR spectrum of 2. Results indicate the reduction of the carbonyl bonds and delocalization of the electrons over the ligands, indicative of U → L backbonding. Additionally, the reduced acyl carbons are found to exist as ketyl radicals [O═C• -] that are responsible for the silent 31P NMR spectra of 2. These findings demonstrate the redox noninnocent nature of BAP- in 2 and 4, causing uranium to exist in a formal oxidation state of +4.
Collapse
Affiliation(s)
- David Samuvel Michael
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| |
Collapse
|
7
|
Wang S, Wang D, Heng Y, Li T, Ding W, Zi G, Walter MD. Synthesis and Structure of [η 5-1,2,4-(Me 3Si) 3C 5H 2] 2Th(bipy) and Its Reactivity toward Small Molecules. Inorg Chem 2024; 63:7473-7492. [PMID: 38591749 DOI: 10.1021/acs.inorgchem.4c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Halide exchange of (Cp3tms)2ThCl2 (1; Cp3tms = η5-1,2,4-(Me3Si)3C5H2) with Me3SiI furnishes (Cp3tms)2ThI2 (2), which is then reduced with potassium graphite (KC8) in the presence of 2,2'-bipyridine to give the thorium bipyridyl metallocene (Cp3tms)2Th(bipy) (3) in good yield. Complex 3 was fully characterized and readily reacted with various small molecules. For example, 3 may serve as a synthetic equivalent for the (Cp3tms)2Th(II) fragment when exposed to CuI, Ph2S2, organic azides, and CS2. Moreover, upon the addition of thiobenzophenone Ph2CS, p-methylbenzaldehyde (p-MeC6H4)CHO, benzophenone Ph2CO, amidate PhCONH(p-tolyl), seleno-ketone (p,p'-dimethoxy), selenobenzophenone (p-MeOPh)2CSe, di(p-tolyl)methanimine (p-tolyl)2C═NH, 1,2-di(benzylidene)hydrazine (PhCH═N)2, and nitriles PhCN, PhCH2CN, and Ph2CHCN C-C coupling results to give (Cp3tms)2Th[(bipy)(Ph2CS)] (8), (Cp3tms)2Th[(bipy)(p-MePhCHO)] (9), (Cp3tms)2Th[(bipy)(Ph2CO)] (10), (Cp3tms)2Th[(bipy){(p-tolylNH)(Ph)CO}] (11), (Cp3tms)2Th[(bipy){(p-MeOPh)2CSe}] (12), (Cp3tms)2Th[(bipy){(p-tolyl)2CNH}] (13), (Cp3tms)2Th[(bipy)(PhCHNN═CHPh)] (14), (Cp3tms)2Th[(bipy)(PhCN)] (16), (Cp3tms)2Th[(bipy)(PhCH2CN)] (17), and (Cp3tms)2Th[(bipy)(Ph2CHCN)] (18), respectively. However, when thiazole is added to 3, the dimeric sulfido complex [(Cp3tms)2Th]2[μ-(bipy)CH2NCHCHS]2 (15) can be isolated. Moreover, the addition of isonitriles such as Me3CNC and PhCH2NC to 3 results in C-N bond cleavage and C-C coupling processes to form the thorium isocyanido amido complexes (Cp3tms)2Th[4-(Me3C)bipy](NC) (19) and (Cp3tms)2Th[4-(PhCH2)bipy](NC) (20), respectively. Nevertheless, upon exposure of 3 to (trimethylsilyl)diazomethane Me3SiCHN2, the bis-amido complex (Cp3tms)2Th[5,6-(Me3SiCH)bipy] (21), concomitant with N2 release, is isolated.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| |
Collapse
|
8
|
Xu X, Jiang H, Wu K. Uranyl Affinity between Uranyl Cation and Different Kinds of Monovalent Anions: Density Functional Theory and Quantitative Structure-Property Relationship Model. J Phys Chem A 2024; 128:2960-2970. [PMID: 38576211 DOI: 10.1021/acs.jpca.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
In order to design effective extractants for uranium extraction from seawater, it is imperative to acquire a more comprehensive understanding of the bonding properties between the uranyl cation (UO22+) and various ligands. Therefore, we employed density functional theory to investigate the complexation reactions of UO22+ with 29 different monovalent anions (L-1), exploring both mono- and bidentate coordination. We proposed a novel concept called "uranyl affinity" (Eua) to facilitate the establishment of a standardized scale for assessing the ease or difficulty of coordination bond formation between UO22+ and diverse ligands. Furthermore, we conducted an in-depth investigation into the underlying mechanisms involved. During the process of uranyl complex [(UO2L)+] formation, lone pair electrons from the coordinating atom in L- are transferred to either the lowest unoccupied molecular degenerate orbitals 1ϕu or 1δu of the uranyl ion, which originate from the uranium atom's 5f unoccupied orbitals. In light of discussion concerning the mechanisms of coordination bond formation, quantitative structure-property relationship analyses were conducted to investigate the correlation between Eua and various structural descriptors associated with the 29 ligands under investigation. This analysis revealed distinct patterns in Eua values while identifying key influencing factors among the different ligands.
Collapse
Affiliation(s)
- Xiang Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiyan Jiang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Kechen Wu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
9
|
Ehrman J, Shumilov K, Jenkins AJ, Kasper JM, Vitova T, Batista ER, Yang P, Li X. Unveiling Hidden Shake-Up Features in the Uranyl M 4-Edge Spectrum. JACS AU 2024; 4:1134-1141. [PMID: 38559711 PMCID: PMC10976573 DOI: 10.1021/jacsau.3c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
The M4,5-edge high energy resolution X-ray absorption near-edge structure (HR-XANES) spectra of actinyls offer valuable insights into the electronic structure and bonding properties of heavy-element complexes. To conduct a comprehensive spectral analysis, it is essential to employ computational methods that accurately account for relativistic effects and electron correlation. In this work, we utilize variational relativistic multireference configurational interaction methods to compute and analyze the X-ray M4-edge absorption spectrum of uranyl. By employing these advanced computational techniques, we achieve excellent agreement between the calculated spectral features and experimental observations. Moreover, the calculations unveil significant shake-up features, which arise from the intricate interplay between strongly correlated 3d core-electron and ligand excitations. This research provides important theoretical insights into the spectral characteristics of heavy-element complexes. Furthermore, it establishes the foundation for utilizing M4,5-edge spectroscopy as a means to investigate the chemical activities of such complexes. By leveraging this technique, we can gain a deeper understanding of the bonding behavior and reactivity of heavy-element compounds.
Collapse
Affiliation(s)
- Jordan
N. Ehrman
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Kirill Shumilov
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J. Jenkins
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Joseph M. Kasper
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tonya Vitova
- Institute
for Nuclear Waste Disposal (INE), Karlsruhe
Institute of Technology, P.O. Box 3640, Karlsruhe D-76021, Germany
| | - Enrique R. Batista
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xiaosong Li
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|