1
|
Castellano FN, Rosko MC. Steric and Electronic Influence of Excited-State Decay in Cu(I) MLCT Chromophores. Acc Chem Res 2024; 57:2872-2886. [PMID: 39259501 DOI: 10.1021/acs.accounts.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
ConspectusFor the past 11 years, a dedicated effort in our research group focused on fundamentally advancing the photophysical properties of cuprous bis-phenanthroline-based metal-to-ligand charge transfer (MLCT) excited states. We rationalized that, by gaining control over the numerous factors limiting the more widespread use of CuI MLCT photosensitizers, they would be readily adopted in numerous light-activated applications given the earth-abundance of copper and the extensive library of 1,10-phenanthrolines developed over the last century. Significant progress has been achieved by recognizing valuable structure-property concepts developed by other researchers in tandem with detailed ultrafast and conventional time-scale investigations, in-silico-inspired molecular designs to predict spectroscopic properties, and applying novel synthetic methodologies. Ultimately, we achieved a plateau in exerting cooperative steric influence to control CuI MLCT excited state decay. This led to combining sterics with π-conjugation and/or inductive electronic effects to further exert control over molecular photophysical properties. The lessons gleaned from our studies of homoleptic complexes were recently extended to heteroleptic bis(phenanthrolines) featuring enhanced visible light absorption properties and long-lived room-temperature photoluminescence. This Account navigates the reader through our intellectual journey of decision-making, molecular and experimental design, and data interpretation in parallel with appropriate background information related to the quantitative characterization of molecular photophysics using CuI MLCT chromophores as prototypical examples.Initially, CuI MLCT excited states, their energetics, and relevant structural conformation changes implicated in their photophysical decay processes are described. This is followed by a discussion of the literature that motivated our research in this area. This led to our first molecular design in 2013, achieving a 7-fold increase in excited state lifetime relative to the current state-of-the-art. The lifetime and photophysical property enhancement resulted from using 2,9-branched alkyl groups in conjunction with flanking 3,8-methyl substituents, a strategy we adapted from the McMillin group, which was initially described in the late 1990s. Applications of this newly conceived chromophore are presented in solar hydrogen-producing photocatalysis, photochemical upconversion, and photosensitization of [4 + 4] anthracene dimerization of potential interest in thermal storage of solar energy in metastable intermediates. Ultrafast transient absorption and fluorescence upconversion spectroscopic characterization of this and related CuI molecules inform the resultant photophysical properties and vice versa, so the most comprehensive structure-property understanding becomes realized when these experimental tools are collectively utilized to investigate the same series of molecules. Computationally guided structural designs generated newly conceived molecules featuring visible light-harvesting and 2,9-cycloalkane substituted complexes. The latter eventually produced record-setting excited state lifetimes in molecules leveraging both cooperative steric influence and electronic inductive effects. Using photoluminescence data from structurally homologous CuI MLCT excited states collected over 44 years, an energy gap correlation successfully modeled the data spanning a 0.3 eV emission energy range. Finally, a new research direction is revealed detailing structure-photophysical property relationships in heteroleptic CuI phenanthroline chromophores that are photoluminescent at room temperature.
Collapse
Affiliation(s)
- Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
2
|
Owsianik K, Romaniuk A, Turek M, Bałczewski P. Comprehensive Review of Synthesis, Optical Properties and Applications of Heteroarylphosphonates and Their Derivatives. Molecules 2024; 29:3691. [PMID: 39125096 PMCID: PMC11314645 DOI: 10.3390/molecules29153691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
This review focuses on optical properties of compounds in which at least one phosphonate group is directly attached to a heteroaromatic ring. Additionally, the synthesis and other applications of these compounds are addressed in this work. The influence of the phosphonate substituent on the properties of the described compounds is discussed and compared with other non-phosphorus substituents, with particular attention given to photophysical properties, such as UV-Vis absorption and emission, fluorescence quantum yield and fluorescence lifetime. Considering the presence of heteroatom, the collected material was divided into two parts, and a review of the literature of the last thirty years on heteroaryl phosphonates containing sulfur and nitrogen atoms in the aromatic ring was conducted.
Collapse
Affiliation(s)
- Krzysztof Owsianik
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | - Adrian Romaniuk
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | - Marika Turek
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland;
| | - Piotr Bałczewski
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland;
| |
Collapse
|
3
|
Kim D, Rosko MC, Castellano FN, Gray TG, Teets TS. Long Excited-State Lifetimes in Three-Coordinate Copper(I) Complexes via Triplet-Triplet Energy Transfer to Pyrene-Decorated Isocyanides. J Am Chem Soc 2024; 146:19193-19204. [PMID: 38956456 DOI: 10.1021/jacs.4c04288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
There has been much effort to improve excited-state lifetimes in photosensitizers based on earth-abundant first-row transition metals. Copper(I) complexes have gained significant attention in this field, and in most cases, sterically driven approaches are used to optimize their lifetimes. This study presents a series of three-coordinate copper(I) complexes (Cu1-Cu3) where the excited-state lifetime is extended by triplet-triplet energy transfer. The heteroleptic compounds feature a cyclohexyl-substituted β-diketiminate (CyNacNacMe) paired with aryl isocyanide ligands, giving the general formula Cu(CyNacNacMe)(CN-Ar) (CN-dmp = 2,6-dimethylphenyl isocyanide for Cu1; CN-pyr = 1-pyrenyl isocyanide for Cu2; CN-dmp-pyr = 2,6-dimethyl-4-(1-pyrenyl)phenyl isocyanide for Cu3). The nature, energies, and dynamics of the low-energy triplet excited states are assessed with a combination of photoluminescence measurements at room temperature and 77 K, ultrafast transient absorption (UFTA) spectroscopy, and DFT calculations. The complexes with the pyrene-decorated isocyanides (Cu2 and Cu3) exhibit extended excited-state lifetimes resulting from triplet-triplet energy transfer (TTET) between the short-lived charge-transfer excited state (3CT) and the long-lived pyrene-centered triplet state (3pyr). This TTET process is irreversible in Cu3, producing exclusively the 3pyr state, and in Cu2, the 3CT and 3pyr states are nearly isoenergetic, enabling reversible TTET and long-lived 3CT luminescence. The improved photophysical properties in Cu2 and Cu3 result in improvements in activity for both photocatalytic stilbene E/Z isomerization via triplet energy transfer and photoredox transformations involving hydrodebromination and C-O bond activation. These results illustrate that the extended excited-state lifetimes achieved through TTET result in newly conceived photosynthetically relevant earth-abundant transition metal complexes.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas G Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
4
|
Kelsey SR, Griaznov G, Spaeth AD, Janzen DE, Douglas JT, Thompson WH, Barybin MV. Tuning the redox profile of the 6,6'-biazulenic platform through functionalization along its molecular axis. Chem Commun (Camb) 2024; 60:5213-5216. [PMID: 38652073 PMCID: PMC11080966 DOI: 10.1039/d4cc00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
The E1/2 potential associated with reduction of the linearly-functionalized 6,6'-biazulenic scaffold is accurately correlated to the combined σp Hammett parameters of the substituents over >600 mV range. X-ray crystallographic analysis of the 2,2'-dichloro-substituted derivative revealed unexpectedly short C-Cl bond distances, along with other metric changes, suggesting a non-trivial cycloheptafulvalene-like structural contribution.
Collapse
Affiliation(s)
- Shaun R Kelsey
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | - Georgii Griaznov
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | - Andrew D Spaeth
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | - Daron E Janzen
- Department of Chemistry and Biochemistry, St. Catherine University, St. Paul, MN 55105, USA
| | - Justin T Douglas
- NMR Laboratory, Molecular Structures Group, University of Kansas, Lawrence, KS 66047, USA
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | - Mikhail V Barybin
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
5
|
Phelan BT, Xie ZL, Liu X, Li X, Mulfort KL, Chen LX. Photodriven electron-transfer dynamics in a series of heteroleptic Cu(I)-anthraquinone dyads. J Chem Phys 2024; 160:144905. [PMID: 38619061 DOI: 10.1063/5.0188245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Solar fuels catalysis is a promising route to efficiently harvesting, storing, and utilizing abundant solar energy. To achieve this promise, however, molecular systems must be designed with sustainable components that can balance numerous photophysical and chemical processes. To that end, we report on the structural and photophysical characterization of a series of Cu(I)-anthraquinone-based electron donor-acceptor dyads. The dyads utilized a heteroleptic Cu(I) bis-diimine architecture with a copper(I) bis-phenanthroline chromophore donor and anthraquinone electron acceptor. We characterized the structures of the complexes using x-ray crystallography and density functional theory calculations and the photophysical properties via resonance Raman and optical transient absorption spectroscopy. The calculations and resonance Raman spectroscopy revealed that excitation of the Cu(I) metal-to-ligand charge-transfer (MLCT) transition transfers the electron to a delocalized ligand orbital. The optical transient absorption spectroscopy demonstrated that each dyad formed the oxidized copper-reduced anthraquinone charge-separated state. Unlike most Cu(I) bis-phenanthroline complexes where increasingly bulky substituents on the phenanthroline ligands lead to longer MLCT excited-state lifetimes, here, we observe a decrease in the long-lived charge-separated state lifetime with increasing steric bulk. The charge-separated state lifetimes were best explained in the context of electron-transfer theory rather than with the energy gap law, which is typical for MLCT excited states, despite the complete conjugation between the phenanthroline and anthraquinone moieties.
Collapse
Affiliation(s)
- Brian T Phelan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Zhu-Lin Xie
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Xiaolin Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Karen L Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
6
|
Rosko MC, Wheeler JP, Alameh R, Faulkner AP, Durand N, Castellano FN. Enhanced Visible Light Absorption in Heteroleptic Cuprous Phenanthrolines. Inorg Chem 2024; 63:1692-1701. [PMID: 38190287 DOI: 10.1021/acs.inorgchem.3c04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
This work presents a series of Cu(I) heteroleptic 1,10-phenanthroline chromophores featuring enhanced UVA and visible-light-harvesting properties manifested through vectorial control of the copper-to-phenanthroline charge-transfer transitions. The molecules were prepared using the HETPHEN strategy, wherein a sterically congested 2,9-dimesityl-1,10-phenanthrolne (mesPhen) ligand was paired with a second phenanthroline ligand incorporating extended π-systems in their 4,7-positions. The combination of electrochemistry, static and time-resolved electronic spectroscopy, 77 K photoluminescence spectra, and time-dependent density functional theory calculations corroborated all of the experimental findings. The model chromophore, [Cu(mesPhen)(phen)]+ (1), lacking 4,7-substitutions preferentially reduces the mesPhen ligand in the lowest energy metal-to-ligand charge-transfer (MLCT) excited state. The remaining cuprous phenanthrolines (2-4) preferentially reduce their π-conjugated ligands in the low-lying MLCT excited state. The absorption cross sections of 2-4 were enhanced (εMLCTmax = 7430-9980 M-1 cm-1) and significantly broadened across the UVA and visible regions of the spectrum compared to 1 (εMLCTmax = 6494 M-1 cm-1). The excited-state decay mechanism mirrored those of long-lived homoleptic Cu(I) phenanthrolines, yielding three distinguishable time constants in ultrafast transient absorption experiments. These represent pseudo-Jahn-Teller distortion (τ1), singlet-triplet intersystem crossing (τ2), and the relaxed MLCT excited-state lifetime (τ3). Effective light-harvesting from Cu(I)-based chromophores can now be rationalized within the HETPHEN strategy while achieving directionality in their respective MLCT transitions, valuable for integration into more complex donor-acceptor architectures and longer-lived photosensitizers.
Collapse
Affiliation(s)
- Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan P Wheeler
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Reem Alameh
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Adrienne P Faulkner
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Nicolas Durand
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
7
|
Wang D, Hu W, Liu C, Huang J, Zhang X. Electronic Tuning of Photoexcited Dynamics in Heteroleptic Cu(I) Complex Photosensitizers. J Phys Chem Lett 2023; 14:10137-10144. [PMID: 37922426 DOI: 10.1021/acs.jpclett.3c02503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Photoexcited dynamics of heteroleptic Cu(I) complexes as noble-metal-free photosensitizers are closely intertwined with the nature of their ligands. By utilizing ultrafast optical and X-ray transient absorption spectroscopies, we characterized a new set of heteroleptic Cu(I) complexes [Cu(PPh3)2(BPyR)]+ (R = CH3, H, Br to COOCH3), with an increase in the electron-withdrawing ability of the functional group (R). We found that after the transient photooxidation of Cu(I) to Cu(II), the increasing electron-withdrawing ability of R barely affects the internal conversion (IC) (e.g., Jahn-taller (JT) distortion) between singlet MLCT states. However, it does accelerate the dynamics of intersystem crossing (ISC) between singlet and triplet MLCT states and the subsequent decay from the triplet MLCT state to the ground state. The associated lifetime constants are reduced by up to 300%. Our understanding of the photoexcited dynamics in heteroleptic Cu(I) complexes through ligand electronic tuning provides valuable insight into the rational design of efficient Cu(I) complex photosensitizers.
Collapse
Affiliation(s)
- Denan Wang
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| | - Wenhui Hu
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| | - Cunming Liu
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
- Department of Chemistry and Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| |
Collapse
|