1
|
Luo L, Chen M, Wang Q. Kinetics-Driven Crystal Facet Evolution Mechanism of Atomically Ordered Intermetallic PtFe Nanocubes toward Electrochemical Catalysis. Inorg Chem 2024; 63:15451-15459. [PMID: 39114933 DOI: 10.1021/acs.inorgchem.4c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Crystal structure engineering in nanoparticles has been regarded as a vital method in catalyst development and design. Herein, PtFe nanocubes, manufactured with ordered PtFe intermetallic structure and a desired facet of {202}, have been successfully prepared via the combination of selective deposition strategy and spatial barrier effect. In-situ X-ray photoelectron spectroscopy found that the growth of the high-index facet and formation of the nanocube for o-PtFe-202 materials arise from the surface Fe2+ modification stabilized effect and the selective deposition of Cl-, respectively. Moreover, density functional theory calculations and X-ray adsorption spectroscopies further proved that the improved oxygen reduction reaction activity and stability of o-PtFe-202 mainly originate from the synergistic effect of the desired high-index facet, ordered crystal structure, and resulting optimal d-band center of Pt. As expected, the o-PtFe-202 exhibits excellent mass activity (2.48 mA·ugPt-1) and specific activity (7.78 mA·cm-2), with only a 7.3% decrease in mass activity after 30 000 cycles.
Collapse
Affiliation(s)
- Leqing Luo
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guizhou, Guiyang 550025, China
| | - Meida Chen
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guizhou, Guiyang 550025, China
| | - Qingmei Wang
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guizhou, Guiyang 550025, China
| |
Collapse
|
2
|
Sun J, Yang J, Wang T, Zhang SL, Yuan H, Zang W, Liu Y, Liu X, Wang W, Xi S, Kirk CH, Wang H, Wang J, Wang X, Bhat U, Liu Z, Wang S, Zhang YW, Wang J. Electrochemical Knocking-Down of Zn Metal Clusters into Single Atoms. NANO LETTERS 2024; 24:5206-5213. [PMID: 38647212 DOI: 10.1021/acs.nanolett.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Single Atoms Catalysts (SACs) have emerged as a class of highly promising heterogeneous catalysts, where the traditional bottom-up synthesis approaches often encounter considerable challenges in relation to aggregation issues and poor stability. Consequently, achieving densely dispersed atomic species in a reliable and efficient manner remains a key focus in the field. Herein, we report a new facile electrochemical knock-down strategy for the formation of SACs, whereby the metal Zn clusters are transformed into single atoms. While a defect-rich substrate plays a pivotal role in capturing and stabilizing isolated Zn atoms, the feasibility of this novel strategy is demonstrated through a comprehensive investigation, combining experimental and theoretical studies. Furthermore, when studied in exploring for potential applications, the material prepared shows a remarkable improvement of 58.21% for the Li+ storage and delivers a capacity over 300 Wh kg-1 after 500 cycles upon the transformation of Zn clusters into single atoms.
Collapse
Affiliation(s)
- Jianguo Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jing Yang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Tuo Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Song Lin Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - Hao Yuan
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wenjie Zang
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Yu Liu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081 China
| | - Ximeng Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Wanwan Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 138634, Singapore
| | - Chin Ho Kirk
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Haimei Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Junhui Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Xingyang Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Usha Bhat
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Zhaolin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - Shijie Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, P. R. China
| |
Collapse
|
3
|
Xu Z, Sun X, Chen Y. Exploring Enhanced Hydrolytic Dehydrogenation of Ammonia Borane with Porous Graphene-Supported Platinum Catalysts. Molecules 2024; 29:1761. [PMID: 38675581 PMCID: PMC11052364 DOI: 10.3390/molecules29081761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Graphene is a good support for immobilizing catalysts, due to its large theoretical specific surface area and high electric conductivity. Solid chemical converted graphene, in a form with multiple layers, decreases the practical specific surface area. Building pores in graphene can increase specific surface area and provide anchor sites for catalysts. In this study, we have prepared porous graphene (PG) via the process of equilibrium precipitation followed by carbothermal reduction of ZnO. During the equilibrium precipitation process, hydrolyzed N,N-dimethylformamide sluggishly generates hydroxyl groups which transform Zn2+ into amorphous ZnO nanodots anchored on reduced graphene oxide. After carbothermal reduction of zinc oxide, micropores are formed in PG. When the Zn2+ feeding amount is 0.12 mmol, the average size of the Pt nanoparticles on PG in the catalyst is 7.25 nm. The resulting Pt/PG exhibited the highest turnover frequency of 511.6 min-1 for ammonia borane hydrolysis, which is 2.43 times that for Pt on graphene without the addition of Zn2+. Therefore, PG treated via equilibrium precipitation and subsequent carbothermal reduction can serve as an effective support for the catalytic hydrolysis of ammonia borane.
Collapse
Affiliation(s)
- Zhenbo Xu
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaolei Sun
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yao Chen
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
4
|
Chen W, Wu J, Li Z, Chen Y, Ao H, Zheng X, Zhang Y, Rong J, Qiu F. High-Density CoSe 2 Sites Embedded within 2D Porous N-Doped Carbon for High-Performance Oxygen Reduction Reaction Electrocatalysis. Inorg Chem 2024; 63:4429-4437. [PMID: 38377564 DOI: 10.1021/acs.inorgchem.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Designing and fabricating efficient and stable nonprecious metal-based oxygen reduction reaction (ORR) electrocatalysts is a pressing and challenging task for the pursuit of sustainable new energy devices. Herein, porous P-CoSe2@NC electrocatalysts with high-density carbon-coated CoSe2 sites were successfully fabricated based on a pyridyl-porphyrinic metal-organic framework (Co-TPyP MOF) via a molten salt-assisted synthesis method. The hierarchical pore and N-doping carbon substrate of P-CoSe2@NC promotes mass transfer and electron-transfer efficiency, which is beneficial to maximize CoSe2 site utilization. Well-designed P-CoSe2@NC exhibits efficient ORR catalytic activity with a high half-wave potential of 0.863 V and excellent catalytic stability. Meanwhile, rechargeable aqueous primary/quasi-solid-state ZABs based on a P-CoSe2@NC air cathode show a high peak power density and exceptional operating stability, catering to the demands of practical applications. The qualified performance and structure stability of the electrocatalytic system may be mainly attributed to the protection of the CoSe2 nanoparticle by the coated carbon layer. Given the rational design of the structure and the component of the electrocatalyst with enhanced ORR activity, we believe that this work has provided a reliable pathway to the development of high-performance transition-metal chalcogenides for energy-storage and -conversion devices.
Collapse
Affiliation(s)
- Wangyi Chen
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Jing Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213614, China
| | - Yu Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou 213614, China
| | - Huaisheng Ao
- School of Petrochemical Engineering, Changzhou University, Changzhou 213614, China
| | - Xudong Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Yuzhe Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Jian Rong
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|