1
|
Chen R, Wang Z, Chen S, Wang L, Wu W, Zhu Y, Cheng N. Optimizing Intermediate Adsorption on Pt Sites via Triple-Phase Interface Electronic Exchange for Methanol Oxidation. Inorg Chem 2024; 63:4364-4372. [PMID: 38373009 DOI: 10.1021/acs.inorgchem.3c04634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
For the most commonly applied platinum-based catalysts of direct methanol fuel cells, the adsorption ability toward reaction intermediates, including CO and OH, plays a vital role in their catalytic activity and antipoisoning in anodic methanol oxidation reaction (MOR). Herein, guided by a theoretical mechanism study, a favorable modulation of the electronic structure and intermediate adsorption energetics for Pt active sites is achieved by constructing the triple-phase interfacial structure between tin oxide (SnO2), platinum (Pt), and nitrogen-doped graphene (NG). From the strong electronic exchange at the triple-phase interface, the adsorption ability toward MOR reaction intermediates on Pt sites could be efficiently optimized, which not only inhibits the adsorption of CO* on active sites but also facilitates the adsorption of OH* to strip the poisoning species from the catalyst surface. Accordingly, the resulting catalyst delivers excellent catalytic activity and antipoisoning ability for MOR catalysis. The mass activity reaches 1098 mA mg-1Pt, 3.23 times of commercial Pt/C. Meanwhile, the initial potentials and main peak for CO oxidation are also located at a much lower potential (0.51 and 0.74 V) against commercial Pt/C (0.83 and 0.89 V).
Collapse
Affiliation(s)
- Runzhe Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou ,Fujian 350108, China
| | - Zichen Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
| | - Suhao Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
| | - Liang Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
| | - Yu Zhu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|