1
|
Ren C, Chen S, Yuan Z, Fu R, Cui Y, Ma Z, Li W, Li X. Cobalt Nanoparticles Catalyzed N-Heterocycles Synthesis via Acceptorless Dehydrogenative Coupling. Chemistry 2024; 30:e202402168. [PMID: 39072825 DOI: 10.1002/chem.202402168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 07/30/2024]
Abstract
The acceptorless dehydrogenation reaction is a sustainable and atom-economical methodology in organic synthesis, resulting in the byproducts of only hydrogen or water. Herein, a robust Co-Si/CN catalyst (derived from ZIF@SiO2 composite) has been synthesized through a one-step assembly process via pyrolysis and etching. This catalyst has been employed for the acceptorless dehydrogenative coupling of 2-aminoalcohols with secondary alcohols, enabling efficient conversion of various substrates into desired quinoline or pyridine derivatives with a yield of up to 94 %.
Collapse
Affiliation(s)
- Changyue Ren
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Shuiyan Chen
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Zeli Yuan
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Rui Fu
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Yanbin Cui
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, 510640, China
| | - Zhuang Ma
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Weizuo Li
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Xinmin Li
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| |
Collapse
|
2
|
Li W, Shi J, He D, Chen H. Cascade Performance of Nitroarenes with Alcohols Boosted by a Hollow Flying Saucer-Shaped Ni-Al 2O 3 Catalyst via a MOF-Templated Strategy Induced by the Kirkendall Effect. Inorg Chem 2023; 62:21470-21478. [PMID: 38048366 DOI: 10.1021/acs.inorgchem.3c03629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Catalysts with an open hollow structure can enhance the mass transfer capability of the catalyst during the reaction process, thereby further improving the catalytic performance. In this work, uniform and monodisperse flying-squircher-shaped Al-MOFs were synthesized via a solvothermal method. Furthermore, a hollow structure Al2O3-supported metallic Ni catalyst (termed Ni-Al2O3-HFA) was synthesized via the Kirkendall effect for the hydrogenation-alkylation cascade reaction by employing as-synthesized Al-MOFs as a carrier for impregnation of Ni(NO3)2·6H2O through further calcination and reduction. Various characterizations (e.g., XRD, HADDF-STEM, H2-TPR) were conducted to reveal the superior performance of the developed Ni-Al2O3-HFA catalyst compared to Ni/Al2O3-IWI (Al2O3 obtained from calcination of Al-MOFs) in cascade reaction between nitroarenes and alcohols. We hope to use the MOF template method via the Kirkendall effect to prepare hollow structure nanocatalysts, which can provide a guideline for the preparation of other hollow materials.
Collapse
Affiliation(s)
- Weizuo Li
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Jing Shi
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Dafang He
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Haiqun Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| |
Collapse
|