1
|
Zhang F, Woods TJ, Rauchfuss TB, Arrigoni F, Zampella G. CO substitution by PPh 3 in Fe 2S 2(CO) 6 proceeds via a novel Fe 2S intermediate. Chem Commun (Camb) 2021; 57:5079-5081. [PMID: 33890601 DOI: 10.1039/d1cc00956g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of Fe2S2(CO)6 and PPh3 affords Fe2S2(CO)4(PPh3)2 by an unprecedented mechanism involving the intermediacy of SPPh3 and Fe2S(CO)6(PPh3)2.
Collapse
Affiliation(s)
- Fanjun Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | | | | | | | | |
Collapse
|
2
|
Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP. [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 2021; 50:1668-1784. [DOI: 10.1039/d0cs01089h] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
[FeFe]-hydrogenases recieved increasing interest in the last decades. This review summarises important findings regarding their enzymatic reactivity as well as inorganic models applied as electro- and photochemical catalysts.
Collapse
Affiliation(s)
| | | | - Shanika Yadav
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Daniel Siegmund
- Department of Electrosynthesis
- Fraunhofer UMSICHT
- 46047 Oberhausen
- Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
- Department of Electrosynthesis
| |
Collapse
|
3
|
Kaim V, Kaur-Ghumaan S. Mononuclear Mn complexes featuring N,S-/N,N-donor and 1,3,5-triaza-7-phosphaadamantane ligands: synthesis and electrocatalytic properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj02104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mononuclear Mn(i) carbonyl complexes incorporating 2-mercaptobenzothiazole or 2-mercaptobenzimidazole and phosphaadamantane ligands were evaluated as electrocatalysts for the HER both in acetonitrile and acetonitrile/water.
Collapse
Affiliation(s)
- Vishakha Kaim
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
4
|
Kariyawasam Pathirana KD, Ghosh P, Hsieh CH, Elrod LC, Bhuvanesh N, Darensbourg DJ, Darensbourg MY. Synthetic Metallodithiolato Ligands as Pendant Bases in [Fe IFe I], [Fe I[Fe(NO)] II], and [(μ-H)Fe IIFe II] Complexes. Inorg Chem 2020; 59:3753-3763. [PMID: 32083850 DOI: 10.1021/acs.inorgchem.9b03409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of ligands with specific stereo- and electrochemical requirements that are necessary for catalyst design challenges synthetic chemists in academia and industry. The crucial aza-dithiolate linker in the active site of [FeFe]-H2ase has inspired the development of synthetic analogues that utilize ligands which serve as conventional σ donors with pendant base features for H+ binding and delivery. Several MN2S2 complexes (M = Ni2+, [Fe(NO)]2+, [Co(NO)]2+, etc.) utilize these cis-dithiolates to bind low valent metals and also demonstrate the useful property of hemilability, i.e., alternate between bi- and monodentate ligation. Herein, synthetic efforts have led to the isolation and characterization of three heterotrimetallics that employ metallodithiolato ligand binding to di-iron scaffolds in three redox levels, (μ-pdt)[Fe(CO)3]2, (μ-pdt)[Fe(CO)3][(Fe(NO))II(IMe)(CO)]+, and (μ-pdt)(μ-H)[FeII(CO)2(PMe3)]2+ to generate (μ-pdt)[(FeI(CO)3][FeI(CO)2·NiN2S2] (1), (μ-pdt)[FeI(CO)3][(Fe(NO))II(IMe)(CO)]+ (2), and (μ-pdt)(μ-H)[FeII(CO)2(PMe3)][FeII(CO)(PMe3)·NiN2S2]+ (3) complexes (pdt = 1,3-propanedithiolate, IMe = 1,3-dimethylimidazole-2-ylidene, NiN2S2 = [N,N'-bis(2-mercaptidoethyl)-1,4-diazacycloheptane] nickel(II)). These complexes display efficient metallodithiolato binding to the di-iron scaffold with one thiolate-S, which allows the free unbound thiolate to potentially serve as a built-in pendant base to direct proton binding, promoting a possible Fe-H-···+H-S coupling mechanism for the electrocatalytic hydrogen evolution reaction (HER) in the presence of acids. Ligand substitution studies on 1 indicate an associative/dissociative type reaction mechanism for the replacement of the NiN2S2 ligand, providing insight into the Fe-S bond strength.
Collapse
Affiliation(s)
| | - Pokhraj Ghosh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Chung-H Hsieh
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Lindy Chase Elrod
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Donald J Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Marcetta Y Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Tang H, Brothers EN, Grapperhaus CA, Hall MB. Electrocatalytic Hydrogen Evolution and Oxidation with Rhenium Tris(thiolate) Complexes: A Competition between Rhenium and Sulfur for Electrons and Protons. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04579] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hao Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | | | - Craig A. Grapperhaus
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
6
|
Eckert PA, Kubarych KJ. Dynamic Flexibility of Hydrogenase Active Site Models Studied with 2D-IR Spectroscopy. J Phys Chem A 2017; 121:608-615. [PMID: 28032999 DOI: 10.1021/acs.jpca.6b11962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogenase enzymes enable organisms to use H2 as an energy source, having evolved extremely efficient biological catalysts for the reversible oxidation of molecular hydrogen. Small-molecule mimics of these enzymes provide both simplified models of the catalysis reactions and potential artificial catalysts that might be used to facilitate a hydrogen economy. We have studied two diiron hydrogenase mimics, μ-pdt-[Fe(CO)3]2 and μ-edt-[Fe(CO)3]2 (pdt = propanedithiolate, edt = ethanedithiolate), in a series of alkane solvents and have observed significant ultrafast spectral dynamics using two-dimensional infrared (2D-IR) spectroscopy. Since solvent fluctuations in nonpolar alkanes do not lead to substantial electrostatic modulations in a solute's vibrational mode frequencies, we attribute the spectral diffusion dynamics to intramolecular flexibility. The intramolecular origin is supported by the absence of any measurable solvent viscosity dependence, indicating that the frequency fluctuations are not coupled to the solvent motional dynamics. Quantum chemical calculations reveal a pronounced coupling between the low-frequency torsional rotation of the carbonyl ligands and the terminal CO stretching vibrations. The flexibility of the CO ligands has been proposed to play a central role in the catalytic reaction mechanism, and our results highlight that the CO ligands are highly flexible on a picosecond time scale.
Collapse
Affiliation(s)
- Peter A Eckert
- Department of Chemistry, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Stepwise isotope editing of [FeFe]-hydrogenases exposes cofactor dynamics. Proc Natl Acad Sci U S A 2016; 113:8454-9. [PMID: 27432985 DOI: 10.1073/pnas.1606178113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The six-iron cofactor of [FeFe]-hydrogenases (H-cluster) is the most efficient H2-forming catalyst in nature. It comprises a diiron active site with three carbon monoxide (CO) and two cyanide (CN(-)) ligands in the active oxidized state (Hox) and one additional CO ligand in the inhibited state (Hox-CO). The diatomic ligands are sensitive reporter groups for structural changes of the cofactor. Their vibrational dynamics were monitored by real-time attenuated total reflection Fourier-transform infrared spectroscopy. Combination of (13)CO gas exposure, blue or red light irradiation, and controlled hydration of three different [FeFe]-hydrogenase proteins produced 8 Hox and 16 Hox-CO species with all possible isotopic exchange patterns. Extensive density functional theory calculations revealed the vibrational mode couplings of the carbonyl ligands and uniquely assigned each infrared spectrum to a specific labeling pattern. For Hox-CO, agreement between experimental and calculated infrared frequencies improved by up to one order of magnitude for an apical CN(-) at the distal iron ion of the cofactor as opposed to an apical CO. For Hox, two equally probable isomers with partially rotated ligands were suggested. Interconversion between these structures implies dynamic ligand reorientation at the H-cluster. Our experimental protocol for site-selective (13)CO isotope editing combined with computational species assignment opens new perspectives for characterization of functional intermediates in the catalytic cycle.
Collapse
|
8
|
Lunsford AM, Beto CC, Ding S, Erdem ÖF, Wang N, Bhuvanesh N, Hall MB, Darensbourg MY. Cyanide-bridged iron complexes as biomimetics of tri-iron arrangements in maturases of the H cluster of the di-iron hydrogenase. Chem Sci 2016; 7:3710-3719. [PMID: 30009000 PMCID: PMC6008931 DOI: 10.1039/c6sc00213g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/18/2016] [Indexed: 01/13/2023] Open
Abstract
Concepts from organometallic chemistry are used to define possibilities of cyanide as a docking unit for bioassembly processes.
Developing from certain catalytic processes required for ancient life forms, the H2 processing enzymes [NiFe]- and [FeFe]-hydrogenase (H2ase) have active sites that are organometallic in composition, possessing carbon monoxide and cyanide as ligands. Simple synthetic analogues of the 2Fe portion of the active site of [FeFe]-H2ase have been shown to dock into the empty carrier (maturation) protein, apo-Hyd-F, via the bridging ability of a terminal cyanide ligand from a low valent FeIFeI unit to the iron of a 4Fe4S cluster of Hyd-F, with spectral evidence indicating CN isomerization during the coupling process (Berggren, et al., Nature, 2013, 499, 66–70). To probe the requirements for such cyanide couplings, we have prepared and characterized four cyanide-bridged analogues of 3-Fe systems with features related to the organoiron moiety within the loaded HydF protein. As in classical organometallic chemistry, the orientation of the CN bridge in the biomimetics is determined by the precursor reagents; no cyanide flipping or linkage isomerization was observed. Density functional theory computations evaluated the energetics of cyanide isomerization in such [FeFe]–CN–Fe ⇌ [FeFe]–NC–Fe units, and found excessively high barriers account for the failure to observe the alternative isomers. These results highlight roles for cyanide as an unusual ligand in biology that may stabilize low spin iron in [FeFe]-hydrogenase, and can act as a bridge connecting multi-iron units during bioassembly of the active site.
Collapse
Affiliation(s)
- Allen M Lunsford
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Christopher C Beto
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Shengda Ding
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Özlen F Erdem
- Department of Physics , Middle East Technical University , 06800 Ankara , Turkey
| | - Ning Wang
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Nattamai Bhuvanesh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Michael B Hall
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | | |
Collapse
|
9
|
Liu YC, Yen TH, Chu KT, Chiang MH. Utilization of Non-Innocent Redox Ligands in [FeFe] Hydrogenase Modeling for Hydrogen Production. COMMENT INORG CHEM 2015. [DOI: 10.1080/02603594.2015.1115397] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Marchetti F, Zacchini S, Zanotti V. C–N Coupling of Isocyanide Ligands Promoted by Acetylide Addition to Diiron Aminocarbyne Complexes. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fabio Marchetti
- Dipartimento
di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi
13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Valerio Zanotti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|