1
|
Britt RD, Rauchfuss TB, Rao G. The H-cluster of [FeFe] Hydrogenases: Its Enzymatic Synthesis and Parallel Inorganic Semisynthesis. Acc Chem Res 2024; 57:1941-1950. [PMID: 38937148 PMCID: PMC11256358 DOI: 10.1021/acs.accounts.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
ConspectusNature's prototypical hydrogen-forming catalysts─hydrogenases─have attracted much attention because they catalyze hydrogen evolution at near zero overpotential and ambient conditions. Beyond any possible applications in the energy sphere, the hydrogenases feature complicated active sites, which implies novel biosynthetic pathways. In terms of the variety of cofactors, the [FeFe]-hydrogenase is among the most complex.For more than a decade, we have worked on the biosynthesis of the active site of [FeFe] hydrogenases. This site, the H-cluster, is a six-iron ensemble consisting of a [4Fe-4S]H cluster linked to a [2Fe]H cluster that is coordinated to CO, cyanide, and a unique organic azadithiolate ligand. Many years ago, three enzymes, namely, HydG, HydE, and HydF, were shown to be required for the biosynthesis and the in vitro maturation of [FeFe] hydrogenases. The structures of the maturases were determined crystallographically, but still little progress was made on the biosynthetic pathway. As described in this Account, the elucidation of the biosynthetic pathway began in earnest with the identification of a molecular iron-cysteinate complex produced within HydG.In this Account, we present our most recent progress toward the molecular mechanism of [2Fe]H biosynthesis using a collaborative approach involving cell-free biosynthesis, isotope and element-sensitive spectroscopies, as well as inorganic synthesis of purported biosynthetic intermediates. Our study starts from the radical SAM enzyme HydG that lyses tyrosine into CO and cyanide and forms an Fe(CO)2(CN)-containing species. Crystallographic identification of a unique auxiliary 5Fe-4S cluster in HydG leads to a proposed catalytic cycle in which a free cysteine-chelated "dangler" Fe serves as the platform for the stepwise formation of a [4Fe-4S][Fe(CO)(CN)(cysteinate)] intermediate, which releases the [Fe(CO)2(CN)(cysteinate)] product, Complex B. Since Complex B is unstable, we applied synthetic organometallic chemistry to make an analogue, syn-B, and showed that it fully replaces HydG in the in vitro maturation of the H-cluster. Syn-B serves as the substrate for the next radical SAM enzyme HydE, where the low-spin Fe(II) center is activated by 5'-dAdo• to form an adenosylated Fe(I) intermediate. We propose that this Fe(I) species strips the carbon backbone and dimerizes in HydE to form a [Fe2(SH)2(CO)4(CN)2]2- product. This mechanistic scenario is supported by the use of a synthetic version of this dimer complex, syn-dimer, which allows for the formation of active hydrogenase with only the HydF maturase. Further application of this semisynthesis strategy shows that an [Fe2(SCH2NH2)2(CO)4(CN)2]2- complex can activate the apo hydrogenase, marking it as the last biosynthetic intermediate en route to the H-cluster. This combined enzymatic and semisynthetic approach greatly accelerates our understanding of H-cluster biosynthesis. We anticipate additional mechanistic details regarding H-cluster biosynthesis to be gleaned, and this methodology may be further applied in the study of other complex metallocofactors.
Collapse
Affiliation(s)
- R. David Britt
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United
States
| | - Thomas B. Rauchfuss
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61820, United States
| | - Guodong Rao
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United
States
| |
Collapse
|
2
|
Zhang F, Woods TJ, Rauchfuss TB. Hybrids of [FeFe]- and [NiFe]-H 2ase Active Site Models. Organometallics 2023; 42:1607-1614. [PMID: 37928214 PMCID: PMC10624399 DOI: 10.1021/acs.organomet.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Complexes of the type (diphosphine)Ni(μ-SR)2Fe(CO)3 are investigated with azadithiolate (adt, HN(CH2S-)2) as the dithiolate. The resulting complexes are hybrid models for the active sites of the [NiFe]- and [FeFe]-hydrogenases. The key complex (dppv)Ni(μ-adt)Fe(CO)3 (3) was prepared from the complex Ni[(SCH2)2NCbz](dppv), which contains a Cbz-protected adt ligand (Cbz = C(O)OCH2Ph, dppv = cis-1,2-(Ph2P)2C2H2). This complex combines with Fe2(CO)9 to give (dppv)Ni[(μ-SCH2)2NCbz]Fe(CO)3, which is readily deprotected to give 3. Complex 3 undergoes protonation at both Fe and N to give successively [(dppv)Ni(μ-adt)FeH(CO)3]+ ([H3]+) and [(dppv)Ni(μ-adtH)FeH(CO)3]2+ ([H3H]2+). The redox properties and dynamics of these complexes resemble previously reported analogues with propanedithiolate. Solutions of [H3]+ readily degrade to [(dppv)Ni[(μ-SCH2)2NCH2]Fe(CO)3]+ ([4]+), which features a methylene group linking N and Fe. Complex [4]+ can be made in high yield by reaction of [H3]+ with CH2O, and this conversion was also demonstrated with 13CH2O. Complex [4]+ undergoes hydrogenolysis by photochemical reaction with H2 to give [(dppv)Ni[(μ-SCH2)2NMe]FeH(CO)3]+, the N-methylated analogue of [H3]+. Upon treatment ith Me3O+, [4]+ undergoes quaternization, giving [(dppv)Ni[(μ-SCH2)2N(Me)CH2]Fe(CO)3]2+. In contrast with the lability of [H3]+, the phosphine-substituted derivative [(dppv)Ni(μ-adt)FeH(CO)2(PPh3)]+ did not degrade. Most complexes were characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Fanjun Zhang
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States; Present Address: School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China (F.Z.)
| | - Toby J Woods
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Britt RD, Tao L, Rao G, Chen N, Wang LP. Proposed Mechanism for the Biosynthesis of the [FeFe] Hydrogenase H-Cluster: Central Roles for the Radical SAM Enzymes HydG and HydE. ACS BIO & MED CHEM AU 2022; 2:11-21. [PMID: 35187536 PMCID: PMC8855341 DOI: 10.1021/acsbiomedchemau.1c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/05/2023]
Abstract
Radical S-adenosylmethionine (radical SAM or rSAM) enzymes use their S-adenosylmethionine cofactor bound to a unique Fe of a [4Fe-4S] cluster to generate the "hot" 5'-deoxyadenosyl radical, which drives highly selective radical reactions via specific interactions with a given rSAM enzyme's substrate. This Perspective focuses on the two rSAM enzymes involved in the biosynthesis of the organometallic H-cluster of [FeFe] hydrogenases. We present here a detailed sequential model initiated by HydG, which lyses a tyrosine substrate via a 5'-deoxyadenosyl H atom abstraction from those amino acid's amino group, initially producing dehydroglycine and an oxidobenzyl radical. In this model, two successive radical cascade reactions lead ultimately to the formation of HydG's product, a mononuclear Fe organometallic complex: [Fe(II)(CN)(CO)2(cysteinate)]-, with the iron originating from a unique "dangler" Fe coordinated by a cysteine ligand providing a sulfur bridge to another [4Fe-4S] auxiliary cluster in the enzyme. In turn, in this model, [Fe(II)(CN)(CO)2(cysteinate)]- is the substrate for HydE, the second rSAM enzyme in the biosynthetic pathway, which activates this mononuclear organometallic unit for dimerization, forming a [Fe2S2(CO)4(CN)2] precursor to the [2Fe] H component of the H-cluster, requiring only the completion of the bridging azadithiolate (SCH2NHCH2S) ligand. This model is built upon a foundation of data that incorporates cell-free synthesis, isotope sensitive spectroscopies, and the selective use of synthetic complexes substituting for intermediates in the enzymatic "assembly line". We discuss controversies pertaining to this model and some remaining open issues to be addressed by future work.
Collapse
Affiliation(s)
- R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Guodong Rao
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Nanhao Chen
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
4
|
Britt RD, Rauchfuss TB. Biosynthesis of the [FeFe] hydrogenase H-cluster via a synthetic [Fe(II)(CN)(CO) 2(cysteinate)] - complex. Dalton Trans 2021; 50:12386-12391. [PMID: 34545884 DOI: 10.1039/d1dt02258j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The H-cluster of [Fe-Fe] hydrogenase consists of a [4Fe]H subcluster linked by the sulfur of a cysteine residue to an organometallic [2Fe]H subcluster that utilizes terminal CO and CN ligands to each Fe along with a bridging CO and a bridging SCH2NHCH2S azadithiolate (adt) to catalyze proton reduction or hydrogen oxidation. Three Fe-S "maturase" proteins, HydE, HydF, and HydG, are responsible for the biosynthesis of the [2Fe]H subcluster and its incorporation into the hydrogenase enzyme to form this catalytically active H-cluster. We have proposed that HydG is a bifunctional enzyme that uses S-adenosylmethione (SAM) bound to a [4Fe-4S] cluster to lyse tyrosine via a transient 5'-deoxyadenosyl radical to produce CO and CN ligands to a unique cysteine-chelated Fe(II) that is linked to a second [4Fe-4S] cluster via the cysteine sulfur. In this "synthon model", after two cycles of tyrosine lysis, the product of HydG is completed: a [Fe(CN)(CO)2(cysteinate)]- organometallic unit that is vectored directly into the synthesis of the [2Fe]H sub-cluster. However our HydG-centric synthon model is not universally accepted, so further validation is important. In this Frontiers article, we discuss recent results using a synthetic "Syn-B" complex that donates [Fe(CN)(CO)2(cysteinate)]- units that match our proposed HydG product. Can Syn-B activate hydrogenase in the absence of HydG and its tyrosine substrate? If so, since Syn-B can be synthesized with specific magnetic nuclear isotopes and with chemical substitutions, its use could allow its enzymatic conversions on the route to the H-cluster to be monitored and modeled in fresh detail.
Collapse
Affiliation(s)
- R David Britt
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA.
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
5
|
Li A, Yang J, Lü S, Gui MS, Yan P, Gao F, Du LB, Yang Q, Li YL. Synthesis, characterization and electrochemical properties of diiron azadithiolate complexes Fe2[(μ-SCH2)2NCH2CCH](CO)5L (L = CO or monophosphines). Polyhedron 2021. [DOI: 10.1016/j.poly.2020.115007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Britt RD, Rao G, Tao L. Biosynthesis of the catalytic H-cluster of [FeFe] hydrogenase: the roles of the Fe-S maturase proteins HydE, HydF, and HydG. Chem Sci 2020; 11:10313-10323. [PMID: 34123177 PMCID: PMC8162317 DOI: 10.1039/d0sc04216a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022] Open
Abstract
[FeFe] hydrogenases carry out the redox interconversion of protons and molecular hydrogen (2H+ + 2e- ⇌ H2) at a complex Fe-S active site known as the H-cluster. The H-cluster consists of a [4Fe-4S] subcluster, denoted here as [4Fe]H, linked via a cysteine sulfur to an interesting organometallic [2Fe]H subcluster thought to be the subsite where the catalysis occurs. This [2Fe]H subcluster consists of two Fe atoms, linked with a bridging CO and a bridging SCH2NHCH2S azadithiolate (adt), with additional terminal CO and CN ligands bound to each Fe. Synthesizing such a complex organometallic unit is a fascinating problem in biochemistry, complicated by the toxic nature of both the CO and CN- species and the relative fragility of the azadithiolate bridge. It has been known for a number of years that this complex biosynthesis is carried out by a set of three essential Fe-S proteins, HydE, HydF, and HydG. HydF is a GTPase, while HydE and HydG are both members of the large family of radical S-adenosylmethionine (rSAM) enzymes. In this perspective we describe the history of research and discovery concerning these three Fe-S "maturase" proteins and describe recent evidence for a sequential biosynthetic pathway beginning with the synthesis of a mononuclear organometallic [Fe(ii)(CO)2CN(cysteine)] complex by the rSAM enzyme HydG and its subsequent activation by the second rSAM enzyme HydE to form a highly reactive Fe(i)(CO)2(CN)S species. In our model a pair of these Fe(i)(CO)2(CN)S units condense to form the [Fe(CO)2(CN)S]2 diamond core of the [2Fe]H cluster, requiring only the installation of the central CH2NHCH2 portion of the azadithiolate bridge, whose atoms are all sourced from the amino acid serine. This final step likely occurs with an interplay of HydE and HydF, the details of which yet remain to be elucidated.
Collapse
Affiliation(s)
- R David Britt
- Department of Chemistry, University of California, Davis Davis CA 95616 USA
| | - Guodong Rao
- Department of Chemistry, University of California, Davis Davis CA 95616 USA
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis Davis CA 95616 USA
| |
Collapse
|
7
|
Song LC, Liu WB, Liu BB. Nickel(II)–Nickel(II) Azadithiolates: Synthesis, Structural Characterization, and Electrocatalytic H 2 Production. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
| | - Wen-Bo Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Bei-Bei Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
8
|
The binuclear cluster of [FeFe] hydrogenase is formed with sulfur donated by cysteine of an [Fe(Cys)(CO) 2(CN)] organometallic precursor. Proc Natl Acad Sci U S A 2019; 116:20850-20855. [PMID: 31570604 DOI: 10.1073/pnas.1913324116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enzyme [FeFe]-hydrogenase (HydA1) contains a unique 6-iron cofactor, the H-cluster, that has unusual ligands to an Fe-Fe binuclear subcluster: CN-, CO, and an azadithiolate (adt) ligand that provides 2 S bridges between the 2 Fe atoms. In cells, the H-cluster is assembled by a collection of 3 maturases: HydE and HydF, whose roles aren't fully understood, and HydG, which has been shown to construct a [Fe(Cys)(CO)2(CN)] organometallic precursor to the binuclear cluster. Here, we report the in vitro assembly of the H-cluster in the absence of HydG, which is functionally replaced by adding a synthetic [Fe(Cys)(CO)2(CN)] carrier in the maturation reaction. The synthetic carrier and the HydG-generated analog exhibit similar infrared spectra. The carrier allows HydG-free maturation to HydA1, whose activity matches that of the native enzyme. Maturation with 13CN-containing carrier affords 13CN-labeled enzyme as verified by electron paramagnetic resonance (EPR)/electron nuclear double-resonance spectra. This synthetic surrogate approach complements existing biochemical strategies and greatly facilitates the understanding of pathways involved in the assembly of the H-cluster. As an immediate demonstration, we clarify that Cys is not the source of the carbon and nitrogen atoms in the adt ligand using pulse EPR to target the magnetic couplings introduced via a 13C3,15N-Cys-labeled synthetic carrier. Parallel mass-spectrometry experiments show that the Cys backbone is converted to pyruvate, consistent with a cysteine role in donating S in forming the adt bridge. This mechanistic scenario is confirmed via maturation with a seleno-Cys carrier to form HydA1-Se, where the incorporation of Se was characterized by extended X-ray absorption fine structure spectroscopy.
Collapse
|
9
|
Niu SJ, Liu XF, Yu XY, Wu HK. Synthesis and characterization of diiron(I) 1,2-dimethylethanedithiolate complexes with bridging or chelating 1,2-bis(diphenylphosphino)ethylene. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1340645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shu-Jing Niu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Xiao-Yong Yu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Hong-Ke Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
10
|
He J, Deng CL, Li Y, Li YL, Wu Y, Zou LK, Mu C, Luo Q, Xie B, Wei J, Hu JW, Zhao PH, Zheng W. A New Route to the Synthesis of Phosphine-Substituted Diiron Aza- and Oxadithiolate Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00040] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jiao He
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Cheng-Long Deng
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Yao Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Yu Wu
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Li-Ke Zou
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Chao Mu
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Qiang Luo
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Bin Xie
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Jian Wei
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Jing-Wen Hu
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Pei-Hua Zhao
- School
of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Wen Zheng
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| |
Collapse
|
11
|
Liu XF. Synthesis and structures of diiron dithiolate complexes with 1,2-bis(diphenylphosphino)acetylene or tris(2-methoxyphenyl)phosphine. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016; 116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - James M. Camara
- Department of Chemistry, Yeshiva University, 500 West 185th Street, New York, New York 10033, United States
| | - Mioy T. Huynh
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Abstract
Virtually all organosulfur compounds react with Fe(0) carbonyls to give the title complexes. These reactions are reviewed in light of major advances over the past few decades, spurred by interest in Fe2(μ-SR)2(CO)x centers at the active sites of the [FeFe]-hydrogenase enzymes. The most useful synthetic route to Fe2(μ-SR)2(CO)6 involves the reaction of thiols with Fe2(CO)9 and Fe3(CO)12. Such reactions can proceed via mono-, di-, and triiron intermediates. The reactivity of Fe(0) carbonyls toward thiols is highly chemoselective, and the resulting dithiolato complexes are fairly rugged. Thus, many complexes tolerate further synthetic elaboration directed at the organic substituents. A second major route involves alkylation of Fe2(μ-S2)(CO)6, Fe2(μ-SH)2(CO)6, and Li2Fe2(μ-S)2(CO)6. This approach is especially useful for azadithiolates Fe2[(μ-SCH2)2NR](CO)6. Elaborate complexes arise via addition of the FeSH group to electrophilic alkenes, alkynes, and carbonyls. Although the first example of Fe2(μ-SR)2(CO)6 was prepared from ferrous reagents, ferrous compounds are infrequently used, although the Fe(II)(SR)2 + Fe(0) condensation reaction is promising. Almost invariably low-yielding, the reaction of Fe3(CO)12, S8, and a variety of unsaturated substrates results in C-H activation, affording otherwise inaccessible derivatives. Thiones and related C═S-containing reagents are highly reactive toward Fe(0), often giving complexes derived from substituted methanedithiolates and C-H activation.
Collapse
Affiliation(s)
- Yulong Li
- School of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
- School of Chemical Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Synthetic and structural studies of tolyl-dithiolate diiron carbonyl complexes with tris(aryl)phosphine co-ligands. TRANSIT METAL CHEM 2016. [DOI: 10.1007/s11243-016-0051-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Rauchfuss TB. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Acc Chem Res 2015; 48:2107-16. [PMID: 26079848 DOI: 10.1021/acs.accounts.5b00177] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The [FeFe] hydrogenases (H2ases) catalyze the redox reaction that interconverts protons and H2. This area of biocatalysis has attracted attention because the metal-based chemistry is unusual, and the reactions have practical implications. The active site consists of a [4Fe-4S] cluster bridged to a [Fe2(μ-dithiolate)(CN)2(CO)3](z) center (z = 1- and 2-). The dithiolate cofactor is [HN(CH2S)2](2-), called the azadithiolate ([adt(H)](2-)). Although many derivatives of Fe2(SR)2(CO)6-xLx are electrocatalysts for the hydrogen evolution reaction (HER), most operate by slow nonbiomimetic pathways. Biomimetic hydrogenogenesis is thought to involve intermediates, wherein the hydride substrate is adjacent to the amine of the adt(H), being bonded to only one Fe center. Formation of terminal hydride complexes is favored when the diiron carbonyl models contain azadithiolate. Although unstable in the free state, the adt cofactor is stable once it is affixed to the Fe2 center. It can be prepared by alkylation of Fe2(SH)2(CO)6 with formaldehyde in the presence of ammonia (to give adt(H) derivatives) or amines (to give adt(R) derivatives). Weak acids protonate Fe2(adt(R))(CO)2(PR3)4 to give terminal hydrido (term-H) complexes. In contrast, protonation of the related 1,3-propanedithiolate (pdt(2-)) complexes Fe2(pdt)(CO)2(PR3)4 requires strong acids. The amine in the azadithiolate is a kinetically fast base, relaying protons to and from the iron, which is a kinetically slow base. The crystal structure of the doubly protonated model [(term-H)Fe2(Hadt(H))(CO)2(dppv)2](2+) confirms the presence of both ammonium and terminal hydrido centers, which interact through a dihydrogen bond (dppv = cis-C2H2(PPh2)2). DFT calculations indicate that this H---H interaction is sensitive to the counterions and is strengthened upon reduction of the diiron center. For the monoprotonated models, the hydride [(term-H)Fe2(adt(H))(CO)2(dppv)2](+) exists in equilibrium with the ammonium tautomer [Fe2(Hadt(H))(CO)2(dppv)2](+). Both [(term-H)Fe2(Hadt(H))(CO)2(dppv)2](2+) and [(term-H)Fe2(adt(H))(CO)2(dppv)2](+) are highly active electrocatalysts for HER. Catalysis is initiated by reduction of the diferrous center, which induces coupling of the protic ammonium center and the hydride ligand. In contrast, the propanedithiolate [(term-H)Fe2(pdt)(CO)2(dppv)2](+) is a poor electrocatalyst for HER. Oxidation of H2 has been demonstrated, starting with models for the oxidized state ("Hox"), for example, [Fe2(adt(H))(CO)3(dppv)(PMe3)](+). Featuring a distorted Fe(II)Fe(I) center, this Hox model reacts slowly with high pressures of H2 to give [(μ-H)Fe2(adt(H))(CO)3(dppv)(PMe3)](+). Highlighting the role of the proton relay, the propanedithiolate [Fe2(pdt)(CO)3(dppv)(PMe3)](+) is unreactive toward H2. The Hox-model + H2 reaction is accelerated in the presence of ferrocenium salts, which simulate the role of the attached [4Fe-4S] cluster. The redox-complemented complex [Fe2(adt(Bn))(CO)3(dppv)(FcP*)](n+) catalyzes both proton reduction and hydrogen oxidation (FcP* = (C5Me5)Fe(C5Me4CH2PEt2)).
Collapse
Affiliation(s)
- Thomas B. Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|